Malolactic fermentation represents a distinctive phase in the vinification process. Indeed, this process contributes substantially to enhancing microbial stability and improving certain sensory attributes of the final wines. The use of non-Oenococcus Lactic Acid Bacteria (LAB) strains presents novel and auspicious prospects for innovation in winemaking. After the completion of Alcoholic Fermentation (AF), yeast activity decreases, and only LAB that are resistant to the stressful conditions of grape must, are able to survive. These LAB are crucial in winemaking as they drive malolactic fermentation (MLF), a secondary biological process that converts L-malic acid into L-lactic acid and CO2. Within this experimentation, MLF was conducted with the Lactiplantibacillus plantarum MLPK45HTM strain, inoculated into grape musts before AF took place. Moreover, Saccharomyces cerevisiae yeast NF213, belonging to the oenological yeasts collection of the Department of Agricultural, Food and Forest Sciences (SAAF) (University of Palermo, Italy), was added to conduct AF. For each variety a trial without MLF starter addition was also included in the experimentation and considered as control (spontaneously fermented) trial. L. plantarum MLPK45H™ strain inoculation occurred 24 hours after the addition of the starter yeast culture in order to promote MLF. The fermentations took place at 20 °C. Each trial was conducted in triplicate. The following analyses were performed on the collected samples: microbiological analysis, dominance of yeasts and bacteria strains, physicochemical analysis (glucose, fructose, ethanol, glycerol, acetic, tartaric, malic, lactic acids, ph, acidity, ethanol, free and total sulphur dioxide), volatile organic composition (VOC) and sensory evaluation. After inoculation, Saccharomyces spp. populations increased significantly, reaching 7.2 - 7.8 Log CFU/mL, whereas non-Saccharomyces spp. (NS) showed lower cell densities. LAB populations, particularly L. plantarum MLPK45H ™, reached high levels post-inoculation (about 8 Log CFU/mL), demonstrating robust growth and stability throughout the fermentation process. At the end of AF, Saccharomyces levels decreased in all trials, while LAB counts remained 7-8 log cycles up to day 8. In all controls, LAB counts were consistently lower than in trials inoculated with L. plantarum MLPK45H ™. Chemical analysis indicated that glucose and fructose levels decreased steadily during AF, with all trials completing AF in less than 12 days. In the co-inoculated trials, MLF trend was different. In Petit Verdot, the complete degradation of malic acid occurred after 7 d of MLF, reaching lactic acid values of 1.38 g/L, while in Nero d'Avola MLF occurred after 10 d. Indeed, the highest values of lactic acid (1.78 g/L) were recorded at the end of AF. In the control trials, spontaneous MLF was carried out after the end of AF. Co-inoculation with MLPK45H™ resulted in wines with more pronounced floral attributes compared to those undergoing spontaneous fermentation. This effect was driven by the production of VOCs linked to floral sensory characteristics. Sensory analysis revealed that wines produced with MLPK45H™ received higher scores for overall acceptability and different sensory attributes. In addition, interesting differences were found between cultivars. In conclusion, our study underscores the potential of MLPK45H™ to optimize malolactic fermentation and enhance the sensory characteristics of wines. The investigation also clarified the existence of relationship between cultivar and LAB in the expression of wine aromas. Further investigation through characterisation of the exometabolome will be necessary to clarify the relationships between cultivar and LAB.
La fermentazione malolattica rappresenta una fase peculiare del processo di vinificazione. Infatti, questo processo contribuisce in modo sostanziale ad aumentare la stabilità microbica e a migliorare alcuni attributi sensoriali dei vini finali. L'uso di ceppi di Batteri Lattici (BL) non-Oenococcus presenta nuove e promettenti prospettive di innovazione nella vinificazione. Dopo il completamento della fermentazione alcolica (FA), l'attività dei lieviti diminuisce e solo i BL resistenti alle condizioni di stress del mosto d'uva sono in grado di sopravvivere. Questi BL sono fondamentali nella vinificazione in quanto guidano la fermentazione malolattica (FML), un processo biologico secondario che converte l'acido L-malico in acido L-lattico e CO2. Nell'ambito di questa sperimentazione, la FML è stata condotta con il ceppo Lactiplantibacillus plantarum MLPK45HTM, inoculato nei mosti d'uva prima che avvenisse la FA. Inoltre, per condurre la FA è stato aggiunto il lievito Saccharomyces cerevisiae NF213, appartenente alla collezione di lieviti enologici del Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF) (Università di Palermo, Italia). Per ogni varietà è stata inclusa nella sperimentazione anche una prova senza aggiunta di FML starter, considerata come prova di controllo (fermentazione spontanea). L'inoculo del ceppo L. Book of abstracts |420 plantarum MLPK45H™ è avvenuto 24 ore dopo l'aggiunta della coltura di lievito starter per promuovere la FML. Le fermentazioni sono avvenute a 20 °C. Ogni prova è stata condotta in triplo. Sui campioni raccolti sono state eseguite le seguenti analisi: analisi microbiologiche, dominanza di ceppi di lieviti e batteri, analisi fisico-chimiche, analisi dei composti organici volatili (VOC) e valutazione sensoriale. Dopo l'inoculo, le popolazioni di Saccharomyces spp. sono aumentate in modo significativo, raggiungendo 7,2-7,8 Log CFU/mL, mentre i non-Saccharomyces spp. (NS) hanno mostrato densità cellulari inferiori. Le popolazioni di BL, in particolare L. plantarum MLPK45H ™, hanno raggiunto livelli elevati dopo l'inoculo (circa 8 Log CFU/mL), dimostrando una crescita robusta e una stabilità durante tutto il processo di fermentazione. Alla fine della FA, i livelli di Saccharomyces sono diminuiti in tutte le prove, mentre la conta dei BL è rimasta di 7-8 cicli log fino all'ottavo giorno. In tutti i controlli, la conta dei BL era costantemente più bassa rispetto alle prove inoculate con L. plantarum MLPK45H ™. Le analisi chimiche hanno indicato che i livelli di glucosio e fruttosio sono diminuiti costantemente durante la FA, con tutte le prove che hanno completato la FA in meno di 12 giorni. Nelle prove con coinoculo, l'andamento della FML è stato diverso. Nel Petit Verdot, la completa degradazione dell'acido malico si è verificata dopo 7 d di FML, raggiungendo valori di acido lattico di 1,38 g/L, mentre nel Nero d'Avola la FML si è verificata dopo 10 d. Infatti, i valori più alti di acido lattico (1,78 g/L) sono stati registrati alla fine della FA. Nelle prove di controllo, la FML spontanea è avvenuta dopo la fine della FA. Il coinoculo con MLPK45H™ ha prodotto vini con attributi floreali più pronunciati rispetto a quelli sottoposti a fermentazione spontanea. Questo effetto è stato determinato dalla produzione di COV legati alle caratteristiche sensoriali floreali. L'analisi sensoriale ha rivelato che i vini prodotti con MLPK45H™ hanno ricevuto punteggi più alti per l'accettabilità complessiva e per i diversi attributi sensoriali. Inoltre, sono state riscontrate interessanti differenze tra le varie cultivar. In conclusione, il nostro studio sottolinea il potenziale di MLPK45H™ per ottimizzare la MLF e migliorare le caratteristiche sensoriali dei vini. L'indagine ha inoltre chiarito l'esistenza di una relazione tra cultivar e LB nell'espressione degli aromi del vino. Ulteriori indagini attraverso la caratterizzazione dell'esometaboloma saranno necessarie per chiarire le relazioni tra cultivar e BL.
Pirrone, A., Naselli, V., Craparo, V., Viola, E., Amato, F., Vella, A., et al. (2025). LARGE-SCALE APPLICATION OF LACTIPLANTIBACILLUS PLANTARUM IN THE WINEMAKING PROCESS OF NERO D'AVOLA AND PETIT VERDOT GRAPES IN SICILY. In 46th World Congress of Vine and Wine. 23rd General Assembly of the OIV 16-20 June 2025, Chișinău, Republic of Moldova. Book of abstracts (pp. 418-420).
LARGE-SCALE APPLICATION OF LACTIPLANTIBACILLUS PLANTARUM IN THE WINEMAKING PROCESS OF NERO D'AVOLA AND PETIT VERDOT GRAPES IN SICILY
Antonino Pirrone
;Vincenzo Naselli;Valentina Craparo;Enrico Viola;Filippo Amato;Azzurra Vella;Irene Dolce;Davide Alongi;Giulio Perricone;Venera Seminerio;Micaela Carusi;Raimondo Gaglio;Daniele Oliva;Luca Settanni;Giancarlo Moschetti;Nicola Francesca;Antonio Alfonzo
2025-01-01
Abstract
Malolactic fermentation represents a distinctive phase in the vinification process. Indeed, this process contributes substantially to enhancing microbial stability and improving certain sensory attributes of the final wines. The use of non-Oenococcus Lactic Acid Bacteria (LAB) strains presents novel and auspicious prospects for innovation in winemaking. After the completion of Alcoholic Fermentation (AF), yeast activity decreases, and only LAB that are resistant to the stressful conditions of grape must, are able to survive. These LAB are crucial in winemaking as they drive malolactic fermentation (MLF), a secondary biological process that converts L-malic acid into L-lactic acid and CO2. Within this experimentation, MLF was conducted with the Lactiplantibacillus plantarum MLPK45HTM strain, inoculated into grape musts before AF took place. Moreover, Saccharomyces cerevisiae yeast NF213, belonging to the oenological yeasts collection of the Department of Agricultural, Food and Forest Sciences (SAAF) (University of Palermo, Italy), was added to conduct AF. For each variety a trial without MLF starter addition was also included in the experimentation and considered as control (spontaneously fermented) trial. L. plantarum MLPK45H™ strain inoculation occurred 24 hours after the addition of the starter yeast culture in order to promote MLF. The fermentations took place at 20 °C. Each trial was conducted in triplicate. The following analyses were performed on the collected samples: microbiological analysis, dominance of yeasts and bacteria strains, physicochemical analysis (glucose, fructose, ethanol, glycerol, acetic, tartaric, malic, lactic acids, ph, acidity, ethanol, free and total sulphur dioxide), volatile organic composition (VOC) and sensory evaluation. After inoculation, Saccharomyces spp. populations increased significantly, reaching 7.2 - 7.8 Log CFU/mL, whereas non-Saccharomyces spp. (NS) showed lower cell densities. LAB populations, particularly L. plantarum MLPK45H ™, reached high levels post-inoculation (about 8 Log CFU/mL), demonstrating robust growth and stability throughout the fermentation process. At the end of AF, Saccharomyces levels decreased in all trials, while LAB counts remained 7-8 log cycles up to day 8. In all controls, LAB counts were consistently lower than in trials inoculated with L. plantarum MLPK45H ™. Chemical analysis indicated that glucose and fructose levels decreased steadily during AF, with all trials completing AF in less than 12 days. In the co-inoculated trials, MLF trend was different. In Petit Verdot, the complete degradation of malic acid occurred after 7 d of MLF, reaching lactic acid values of 1.38 g/L, while in Nero d'Avola MLF occurred after 10 d. Indeed, the highest values of lactic acid (1.78 g/L) were recorded at the end of AF. In the control trials, spontaneous MLF was carried out after the end of AF. Co-inoculation with MLPK45H™ resulted in wines with more pronounced floral attributes compared to those undergoing spontaneous fermentation. This effect was driven by the production of VOCs linked to floral sensory characteristics. Sensory analysis revealed that wines produced with MLPK45H™ received higher scores for overall acceptability and different sensory attributes. In addition, interesting differences were found between cultivars. In conclusion, our study underscores the potential of MLPK45H™ to optimize malolactic fermentation and enhance the sensory characteristics of wines. The investigation also clarified the existence of relationship between cultivar and LAB in the expression of wine aromas. Further investigation through characterisation of the exometabolome will be necessary to clarify the relationships between cultivar and LAB.| File | Dimensione | Formato | |
|---|---|---|---|
|
Pirrone at al., OIV 2025.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


