Fresh ovine “primosale” cheese was processed with the addition of grape pomace powder (GPP). Cheese making was performed using pasteurized ewes’ milk and four selected Lactococcus lactis strains (Mise36, Mise94, Mise169 and Mise190) inoculated individually. For each strain the control cheese (CCP) was not added with GPP, while the experimental cheese (ECP) was enriched with 1% (w/w) GPP. GPP did not influence the starter development that reached levels of 109 CFU/g in all final cheeses. The comparison of the bacterial isolates by randomly amplified polymorphic DNA (RAPD)-PCR showed the dominance of the added strains over indigenous milk bacteria resistant to pasteurization. GPP addition reduced fat content and determined an increase of protein and of secondary lipid oxidation. Sensory tests indicated that cheeses CCP94 and ECP94, produced with the strain Mise94, reached the best appreciation scores. Following in vitro simulated human digestion, bioaccessible fraction of ECP94 showed antioxidant capacity, evaluated as radical scavenging activity and inhibition of membrane lipid oxidation, significantly higher than that from CCP94, with promising increase in functional properties. Thus, the main hypothesis was accepted since the functional aspects of the final cheeses improved, confirming that GPP is relevant for sustainable nutrition by using winemaking by-products.
Gaglio R., Barbaccia P., Barbera M., Restivo I., Attanzio A., Maniaci G., et al. (2021). The use of winery by-products to enhance the functional aspects of the fresh ovine “primosale” cheese. FOODS, 10(2) [10.3390/foods10020461].
The use of winery by-products to enhance the functional aspects of the fresh ovine “primosale” cheese
Gaglio R.
;Barbaccia P.;Barbera M.;Restivo I.;Attanzio A.;Maniaci G.;Di Grigoli A.;Francesca N.;Tesoriere L.;Bonanno A.;Moschetti G.;Settanni L.
2021-01-01
Abstract
Fresh ovine “primosale” cheese was processed with the addition of grape pomace powder (GPP). Cheese making was performed using pasteurized ewes’ milk and four selected Lactococcus lactis strains (Mise36, Mise94, Mise169 and Mise190) inoculated individually. For each strain the control cheese (CCP) was not added with GPP, while the experimental cheese (ECP) was enriched with 1% (w/w) GPP. GPP did not influence the starter development that reached levels of 109 CFU/g in all final cheeses. The comparison of the bacterial isolates by randomly amplified polymorphic DNA (RAPD)-PCR showed the dominance of the added strains over indigenous milk bacteria resistant to pasteurization. GPP addition reduced fat content and determined an increase of protein and of secondary lipid oxidation. Sensory tests indicated that cheeses CCP94 and ECP94, produced with the strain Mise94, reached the best appreciation scores. Following in vitro simulated human digestion, bioaccessible fraction of ECP94 showed antioxidant capacity, evaluated as radical scavenging activity and inhibition of membrane lipid oxidation, significantly higher than that from CCP94, with promising increase in functional properties. Thus, the main hypothesis was accepted since the functional aspects of the final cheeses improved, confirming that GPP is relevant for sustainable nutrition by using winemaking by-products.File | Dimensione | Formato | |
---|---|---|---|
Gaglio et al., 2021 (The Use of Winery by-Products to Enhance the Functional Aspects of the Fresh Ovine Primosale Cheese).pdf
accesso aperto
Descrizione: Articolo Principale
Tipologia:
Versione Editoriale
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.