Postharvest fruit loss is caused by the absence of advanced handling and storage technologies and the quiescent presence of fungal pathogens. Therefore, there is a growing demand for sustainable decisions for the planet. This study focused on the use of two types of edible coatings: one was based on the essential oil of Origanum vulgare L. subsp. viridulum with Aloe arborescens Mill. gel (EC1), and the other was based on the hydrolate only (EC2). These treatments were applied to provide defense against fungal infections in papaya (Carica papaya L. cv Solo), and the storage time was 25 days (T5 ± 1 °C). Fruits coated with EC1 were more contaminated with fungal pathogens than both control (CTR) and EC2 fruit. EC2 showed a statistically lower decay index than CTR and EC1 and maintained its organoleptic characteristics better, showing a 15% loss of firmness after 25 days of storage. Furthermore, the lowest decay index (1.14 after 25 days) was found for the EC1 and CTR. These findings suggest that the use of hydrolate can be useful for extending the shelf life and maintaining the quality of papaya fruit, representing an alternative to the use of synthetic fungicides for food safety.
Alessandra Culmone, Giulia Mirabile, Ilenia Tinebra, Marco Michelozzi, Alessandra Carrubba, Maria Grazia Bellardi, et al. (2023). Hydrolate and EO Application to Reduce Decay of Carica papaya during Storage. HORTICULTURAE, 9 [10.3390/horticulturae9020204].
Hydrolate and EO Application to Reduce Decay of Carica papaya during Storage
Alessandra CulmonePrimo
;Giulia Mirabile;Ilenia Tinebra
;Alessandra Carrubba;Vittorio Farina;Gianfranco RomanazziCo-ultimo
;Livio TortaCo-ultimo
2023-02-03
Abstract
Postharvest fruit loss is caused by the absence of advanced handling and storage technologies and the quiescent presence of fungal pathogens. Therefore, there is a growing demand for sustainable decisions for the planet. This study focused on the use of two types of edible coatings: one was based on the essential oil of Origanum vulgare L. subsp. viridulum with Aloe arborescens Mill. gel (EC1), and the other was based on the hydrolate only (EC2). These treatments were applied to provide defense against fungal infections in papaya (Carica papaya L. cv Solo), and the storage time was 25 days (T5 ± 1 °C). Fruits coated with EC1 were more contaminated with fungal pathogens than both control (CTR) and EC2 fruit. EC2 showed a statistically lower decay index than CTR and EC1 and maintained its organoleptic characteristics better, showing a 15% loss of firmness after 25 days of storage. Furthermore, the lowest decay index (1.14 after 25 days) was found for the EC1 and CTR. These findings suggest that the use of hydrolate can be useful for extending the shelf life and maintaining the quality of papaya fruit, representing an alternative to the use of synthetic fungicides for food safety.File | Dimensione | Formato | |
---|---|---|---|
horticulturae-09-00204.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.