Among the next-generation solar cells, a predominant role is played by Dye sensitized solar cells (DSSC) based on ruthenium complexes as sensitizers. They take advantage of a photoelectrochemical system to transform solar radiation into electric energy. In fact, DSSCs represent a cost-effective alternative to traditional silicon-based photovoltaic devices and they do not require expensive and sophisticated apparatus for their fabrication. In this work, we have produced and tested ruthenium DSSCs. In particular, we have measured the main parameters of these cells, such as the electrical and power performances and the efficiency levels, at different irradiance levels and at different incident wavelengths. Our results show a maximum conversion efficiency between 11% and 12% in the range within 540 and 550 nm. The results are in a fairly good agreement with theoretical predictions, especially with regard to the dependence of the parameters on the irradiance levels. Nevertheless, there are some aspects that suggest the need for further and more detailed studies on the deterioration mechanisms and fabrication processes.

Bongiovanni, A., Parisi, A., Ficicchia, A., Palmisano, G., Curcio, L., Calogero, G., et al. (2014). Fabrication and Characterization of Dye-Sensitized Solar Cells. In 11th Symposium of European Vacuum Coaters - Anzio 2014 - Program & Abstracts (pp.25-25).

Fabrication and Characterization of Dye-Sensitized Solar Cells

PARISI, Antonino;PALMISANO, Giovanni;CURCIO, Luciano;PERNICE, Riccardo;ROMANO, Pietro;VIOLA, Fabio;CINO, Alfonso Carmelo;STIVALA, Salvatore;ADAMO, Gabriele;DI GARBO, Chiara;CUSUMANO, Pasquale;LIVRERI, Patrizia;BUSACCA, Alessandro
2014-01-01

Abstract

Among the next-generation solar cells, a predominant role is played by Dye sensitized solar cells (DSSC) based on ruthenium complexes as sensitizers. They take advantage of a photoelectrochemical system to transform solar radiation into electric energy. In fact, DSSCs represent a cost-effective alternative to traditional silicon-based photovoltaic devices and they do not require expensive and sophisticated apparatus for their fabrication. In this work, we have produced and tested ruthenium DSSCs. In particular, we have measured the main parameters of these cells, such as the electrical and power performances and the efficiency levels, at different irradiance levels and at different incident wavelengths. Our results show a maximum conversion efficiency between 11% and 12% in the range within 540 and 550 nm. The results are in a fairly good agreement with theoretical predictions, especially with regard to the dependence of the parameters on the irradiance levels. Nevertheless, there are some aspects that suggest the need for further and more detailed studies on the deterioration mechanisms and fabrication processes.
30-set-2014
11th Symposium of European Vacuum Coaters - Anzio 2014
Anzio, Italy
29 Settembre - 1 Ottobre 2014
11
2014
1
Bongiovanni, A., Parisi, A., Ficicchia, A., Palmisano, G., Curcio, L., Calogero, G., et al. (2014). Fabrication and Characterization of Dye-Sensitized Solar Cells. In 11th Symposium of European Vacuum Coaters - Anzio 2014 - Program & Abstracts (pp.25-25).
Proceedings (atti dei congressi)
Bongiovanni, A; Parisi, A; Ficicchia, A; Palmisano, G; Curcio, L; Calogero, G; Di Marco, G; Pernice, R; Romano, P; Viola, F; Cino, AC; Stivala, S; Can...espandi
File in questo prodotto:
File Dimensione Formato  
DSSC - Anzio 2014.pdf

Solo gestori archvio

Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/98531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact