Thermal insulation has become one of the central themes in energy behavior improvement. The use of insulating materials, from the thermal and hydrothermal aspect, allows the reduction of the heat transfer in each of the technical elements increasing their thermal inertia. Even if the research has led to the use of innovative materials with high values of thermal insulation, one of the main problems, which is difficult to resolve, is the thickness of the building envelope to reach levels of transmittance that can allow considerable savings of energy and CO2 emissions. With this objective the VIP (Vacuum Insulation Panel) technology in building applications is an innovative solution to obtain very low values of thermal conductivity, with reduced thicknesses. This latter aspect is even more relevant in the energy retrofit of constructions, where the request for an adjustment to higher levels of energy efficiency requires an addition of insulating material layers. In particular, the VIP consist of an open cell structure, made with different kinds of materials, for the realization of an evacuated chamber and an envelope to maintain the very low internal pressure (10-5-10-3 mBar). The Dipartimento di Architettura of the Università of Palermo has developed a research study on VIP applications in buildings. The study has been developed by different steps: • Study of the state of the art, with particular reference to commercially available systems and investigational systems; • Evaluation of the critical issues during the production and installation phases; • Reviews of the thermal and mechanical performances; • Research for new materials adaptable to the VIP technology. The paper will show some aspects of the research such as the benefits of each solution through a cost-benefit analysis that can provide useful information for an appropriate choice aimed at reducing costs and at improving energy performance.

De Vecchi, A., Colajanni, S., Sanfilippo, E. (2013). Performance Analysis of Innovative Vacuum Insulation Panel. In O. Ural, E. Pizzi, S. Croce (a cura di), Changing Needs, Adaptive Buildings, Smart Cities - Volume 1 (pp. 641-648). Milano : PoliScript.

Performance Analysis of Innovative Vacuum Insulation Panel

DE VECCHI, Antonio;COLAJANNI, Simona
;
SANFILIPPO, Elsa
2013-01-01

Abstract

Thermal insulation has become one of the central themes in energy behavior improvement. The use of insulating materials, from the thermal and hydrothermal aspect, allows the reduction of the heat transfer in each of the technical elements increasing their thermal inertia. Even if the research has led to the use of innovative materials with high values of thermal insulation, one of the main problems, which is difficult to resolve, is the thickness of the building envelope to reach levels of transmittance that can allow considerable savings of energy and CO2 emissions. With this objective the VIP (Vacuum Insulation Panel) technology in building applications is an innovative solution to obtain very low values of thermal conductivity, with reduced thicknesses. This latter aspect is even more relevant in the energy retrofit of constructions, where the request for an adjustment to higher levels of energy efficiency requires an addition of insulating material layers. In particular, the VIP consist of an open cell structure, made with different kinds of materials, for the realization of an evacuated chamber and an envelope to maintain the very low internal pressure (10-5-10-3 mBar). The Dipartimento di Architettura of the Università of Palermo has developed a research study on VIP applications in buildings. The study has been developed by different steps: • Study of the state of the art, with particular reference to commercially available systems and investigational systems; • Evaluation of the critical issues during the production and installation phases; • Reviews of the thermal and mechanical performances; • Research for new materials adaptable to the VIP technology. The paper will show some aspects of the research such as the benefits of each solution through a cost-benefit analysis that can provide useful information for an appropriate choice aimed at reducing costs and at improving energy performance.
2013
Settore ICAR/10 - Architettura Tecnica
9788864930138
De Vecchi, A., Colajanni, S., Sanfilippo, E. (2013). Performance Analysis of Innovative Vacuum Insulation Panel. In O. Ural, E. Pizzi, S. Croce (a cura di), Changing Needs, Adaptive Buildings, Smart Cities - Volume 1 (pp. 641-648). Milano : PoliScript.
File in questo prodotto:
File Dimensione Formato  
39th IAHS.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/83852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact