The increasing penetration of renewable sources introduces new challenges for power systems’ stability, especially for isolated systems characterized by low inertia and powered through a single diesel power plant, such as it happens in small islands. For this reason, research projects, such as the BLORIN project, have focused on the provision of energy services involving electric vehicles owners residential users to mitigate possible issues on the power system due to unpredictable generation from renewable sources. The residential users were part of a blockchain-based platform, which also the Distributors/Aggregators were accessing. This paper describes the integrated framework that was set up to verify the feasibility and effectiveness of some of the methodologies developed in the BLORIN project for fast frequency response in isolated systems characterized by low rotational inertia. The validation of the proposed methodologies for fast frequency response using Vehicle-to-Grid or Demand Response programs was indeed carried out by emulating the dynamic behavior of different power resources in a Power Hardware-in-the-Loop environment using the equipment installed at the LabZERO laboratory of Politecnico di Bari, Italy. The laboratory, hosting a physical microgrid as well as Power Hardware-in-the-Loop facilities, was integrated within the BLORIN blockchain platform. The tests were conducted by assuming renewable generation development scenarios (mainly photovoltaic) and simulating the system under the worst-case scenarios caused by reduced rotational inertia. The experiments allowed to fully simulate users’ interaction with the energy system and blockchain network reproducing realistic conditions of tracking and remuneration of users’ services. The results obtained show the effectiveness of the BLORIN platform for the provision, tracking and remuneration of grid services by electric vehicles and end users, and the benefits that are achieved in terms of reducing the number of diesel generating units that need to be powered on just to provide operational reserve due to the penetration of renewable sources, resulting in fuel savings and reduced emissions.

Sciume' G., Iurlaro C., Bruno S., Musca R., Gallo P., Zizzo G., et al. (2024). A blockchain-based architecture for tracking and remunerating fast frequency response. SUSTAINABLE ENERGY, GRIDS AND NETWORKS, 40 [10.1016/j.segan.2024.101530].

A blockchain-based architecture for tracking and remunerating fast frequency response

Sciume' G.
;
Musca R.;Gallo P.;Zizzo G.;Riva Sanseverino E.;
2024-12-01

Abstract

The increasing penetration of renewable sources introduces new challenges for power systems’ stability, especially for isolated systems characterized by low inertia and powered through a single diesel power plant, such as it happens in small islands. For this reason, research projects, such as the BLORIN project, have focused on the provision of energy services involving electric vehicles owners residential users to mitigate possible issues on the power system due to unpredictable generation from renewable sources. The residential users were part of a blockchain-based platform, which also the Distributors/Aggregators were accessing. This paper describes the integrated framework that was set up to verify the feasibility and effectiveness of some of the methodologies developed in the BLORIN project for fast frequency response in isolated systems characterized by low rotational inertia. The validation of the proposed methodologies for fast frequency response using Vehicle-to-Grid or Demand Response programs was indeed carried out by emulating the dynamic behavior of different power resources in a Power Hardware-in-the-Loop environment using the equipment installed at the LabZERO laboratory of Politecnico di Bari, Italy. The laboratory, hosting a physical microgrid as well as Power Hardware-in-the-Loop facilities, was integrated within the BLORIN blockchain platform. The tests were conducted by assuming renewable generation development scenarios (mainly photovoltaic) and simulating the system under the worst-case scenarios caused by reduced rotational inertia. The experiments allowed to fully simulate users’ interaction with the energy system and blockchain network reproducing realistic conditions of tracking and remuneration of users’ services. The results obtained show the effectiveness of the BLORIN platform for the provision, tracking and remuneration of grid services by electric vehicles and end users, and the benefits that are achieved in terms of reducing the number of diesel generating units that need to be powered on just to provide operational reserve due to the penetration of renewable sources, resulting in fuel savings and reduced emissions.
dic-2024
Settore IIND-08/B - Sistemi elettrici per l'energia
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
Sciume' G., Iurlaro C., Bruno S., Musca R., Gallo P., Zizzo G., et al. (2024). A blockchain-based architecture for tracking and remunerating fast frequency response. SUSTAINABLE ENERGY, GRIDS AND NETWORKS, 40 [10.1016/j.segan.2024.101530].
File in questo prodotto:
File Dimensione Formato  
SEGAN02.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF Visualizza/Apri
ssrn-4805168.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 6.84 MB
Formato Adobe PDF
6.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/659894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact