Rapeseed (Brassica napus var. oleifera D.C.) and Ethiopian mustard (Brassica carinata A. Braun) are promising industrial crops for cultivation in the Southern Mediterranean area due to profitable yields under semi-arid conditions. The exploitation of raw materials produced by these crops is very convenient for farmers to produce bioenergy directly on-farm and permits them to create a short agri-energy supply chain. The purpose of this study was to determine their yield performance under rainfed conditions and make an economic assessment of a combined heat and power plant (CHP) system operating on pure vegetable oil (PVO). Tests were conducted in Sicily (Italy) from 2012 to 2014. Seed and crop residue yields were detected. The analysis of seed, defatted seed meal and crop residue, and the chemical-physical aspects of PVO were carried out according to conventional protocols. A pilot CHP system was used for cogenerating electricity and heat. In general, rapeseed had the highest seed (2.27 t ha-1) and oil (1.11 t ha-1) yields. The average oil content ranged from 44.88 % (Ethiopian mustard) to 45.73 % dry matter (rapeseed). Ethiopian mustard performed better than rapeseed in terms of aboveground biomass yield (5.49 t ha-1), in both years. The two crops showed different fatty acid profiles of the oil mainly due to diverse content of erucic and oleic acids. The CHP system had an average consumption of 14.41 kg PVO h-1. These results confirm that the productivity of the species can be appreciable in the Southern Mediterranean area and indicate the use of raw materials of these crops as crucial to the development a sustainable short agri-energy supply chain.

Mario Licata, D.F. (2024). Productivity of two Brassica oilseed crops in a Mediterranean environment and assessment of the qualitative characteristics of raw materials for bioenergy purposes. HELIYON, 10(5) [10.1016/j.heliyon.2024.e26818].

Productivity of two Brassica oilseed crops in a Mediterranean environment and assessment of the qualitative characteristics of raw materials for bioenergy purposes

Mario Licata
Primo
;
Davide Farruggia
Secondo
;
Giuseppe Di Miceli
;
Francesco Salamone;Nicolò Iacuzzi
Penultimo
;
Teresa Tuttolomondo
Ultimo
2024-02-23

Abstract

Rapeseed (Brassica napus var. oleifera D.C.) and Ethiopian mustard (Brassica carinata A. Braun) are promising industrial crops for cultivation in the Southern Mediterranean area due to profitable yields under semi-arid conditions. The exploitation of raw materials produced by these crops is very convenient for farmers to produce bioenergy directly on-farm and permits them to create a short agri-energy supply chain. The purpose of this study was to determine their yield performance under rainfed conditions and make an economic assessment of a combined heat and power plant (CHP) system operating on pure vegetable oil (PVO). Tests were conducted in Sicily (Italy) from 2012 to 2014. Seed and crop residue yields were detected. The analysis of seed, defatted seed meal and crop residue, and the chemical-physical aspects of PVO were carried out according to conventional protocols. A pilot CHP system was used for cogenerating electricity and heat. In general, rapeseed had the highest seed (2.27 t ha-1) and oil (1.11 t ha-1) yields. The average oil content ranged from 44.88 % (Ethiopian mustard) to 45.73 % dry matter (rapeseed). Ethiopian mustard performed better than rapeseed in terms of aboveground biomass yield (5.49 t ha-1), in both years. The two crops showed different fatty acid profiles of the oil mainly due to diverse content of erucic and oleic acids. The CHP system had an average consumption of 14.41 kg PVO h-1. These results confirm that the productivity of the species can be appreciable in the Southern Mediterranean area and indicate the use of raw materials of these crops as crucial to the development a sustainable short agri-energy supply chain.
23-feb-2024
Mario Licata, D.F. (2024). Productivity of two Brassica oilseed crops in a Mediterranean environment and assessment of the qualitative characteristics of raw materials for bioenergy purposes. HELIYON, 10(5) [10.1016/j.heliyon.2024.e26818].
File in questo prodotto:
File Dimensione Formato  
HELIYON_2024.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/636688
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact