We establish blow-up results for a system of semilinear hyperbolic inequalities in an exterior domain of the half-space. The considered system is investigated under an inhomogeneous Dirichlet-type boundary condition depending on both time and space variables. In certain cases, an optimal criterium of Fujita-type is derived. Our results yield naturally sharp nonexistence criteria for the corresponding stationary wave system and equation.

Jleli M., Samet B., Vetro C. (2023). On the critical curve for systems of hyperbolic inequalities in an exterior domain of the half-space. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 526(1) [10.1016/j.jmaa.2023.127325].

On the critical curve for systems of hyperbolic inequalities in an exterior domain of the half-space

Vetro C.
2023-10-01

Abstract

We establish blow-up results for a system of semilinear hyperbolic inequalities in an exterior domain of the half-space. The considered system is investigated under an inhomogeneous Dirichlet-type boundary condition depending on both time and space variables. In certain cases, an optimal criterium of Fujita-type is derived. Our results yield naturally sharp nonexistence criteria for the corresponding stationary wave system and equation.
ott-2023
Jleli M., Samet B., Vetro C. (2023). On the critical curve for systems of hyperbolic inequalities in an exterior domain of the half-space. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 526(1) [10.1016/j.jmaa.2023.127325].
File in questo prodotto:
File Dimensione Formato  
10447_594293.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 432.36 kB
Formato Adobe PDF
432.36 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022247X23003281-main.pdf

accesso aperto

Descrizione: © 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
Tipologia: Versione Editoriale
Dimensione 445.95 kB
Formato Adobe PDF
445.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/594293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact