
ON THE CRITICAL CURVE FOR SYSTEMS OF HYPERBOLIC
INEQUALITIES IN AN EXTERIOR DOMAIN OF THE HALF-SPACE

MOHAMED JLELI, BESSEM SAMET, AND CALOGERO VETRO

Abstract. We establish blow-up results for a system of semilinear hyperbolic inequalities
in an exterior domain of the half-space. The considered system is investigated under an
inhomogeneous Dirichlet-type boundary condition depending on both time and space variables.
In certain cases, an optimal criterium of Fujita-type is derived. Our results yield naturally
sharp nonexistence criteria for the corresponding stationary wave system and equation.
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1. Introduction

In this paper, we consider a system of wave inequalities in an exterior domain of the half-
space, under inhomogeneous Dirichlet-type boundary conditions. Let N ≥ 2, we study the
following problem

∂ttu−∆u ≥ |v|p in (0,∞)× Ω,
∂ttv −∆v ≥ |u|q in (0,∞)× Ω,
(u(t, x), v(t, x)) ⪰ (0, 0) on (0,∞)× Γ0,
(u(t, x), v(t, x)) ⪰ (a(t)f(x), b(t)g(x)) on (0,∞)× Γ1,

(1.1)

where Ω = {x ∈ RN
+ : |x| ≥ 1}, RN

+ = {x = (x1, x2, · · · , xN) ∈ RN : xN > 0}, Γ0 = {x ∈
Ω : xN = 0}, Γ1 = {x ∈ Ω : xN > 0, |x| = 1}, p, q > 1, f, g ∈ L1(Γ1), and a(t), b(t) are
nonnegative locally integrable functions to be specified later. Here, by νi (i = 0, 1) we will
denote the outward unit normal vector on Γi, relative to Ω, and by ⪰ we mean the partial
order in R2 given as

(w1, w2) ⪰ (z1, z2) ⇐⇒ wi ≥ zi, i = 1, 2.
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Furthermore, for w, z ∈ R2 we write w ≻ z to indicate that w ⪰ z and w ̸= z. Theoretically
we are interested in establishing whether global weak solutions to problem (1.1) do not exist.
Some motivations for studying problems of type (1.1) are mentioned below.

In the case of the whole space, the large-time behavior of solutions to the wave equation

(1.2) ∂ttu−∆u = |u|p in (0,∞)× RN

has been investigated in several works, see e.g. [4, 5, 6, 12, 15, 21, 22, 23, 24, 27] and the
references therein. For example, in [4] the authors discuss the existence of unique global
solution under suitable weighted Strichartz estimates and without spherical symmetry, and
[24] adds information about the solution to the so-called Strauss conjecture for (1.2). Thanks
to these works, we know that for every N ≥ 2, (1.2) admits a Fujita-type critical exponent
(Strauss exponent)

pS(N) =
N + 1 +

√
N2 + 10N − 7

2(N − 1)
.

More precisely, we note that

(i) if 1 < p ≤ pS(N), then for any compactly supported initial values with positive
average, the solution to (1.2) blows-up in a finite time;

(ii) if p > pS(N), then the solution to (1.2) exists globally in time for suitable compactly
supported initial values.

In [2], the authors investigate the system of wave equations{
∂ttu−∆u = |v|p in (0,∞)× RN ,
∂ttv −∆v = |u|q in (0,∞)× RN ,

(1.3)

where p, q > 1. Namely, it was shown that, if

N − 1

2
< max

{
p+ 2 + q−1

pq − 1
,
q + 2 + p−1

pq − 1

}
,

then (under certain conditions on the initial values) (1.3) has no global solution. Moreover,
for (p, q) belonging to a subset of the p&q plane

p, q > 1,
N − 1

2
> max

{
p+ 2 + q−1

pq − 1
,
q + 2 + p−1

pq − 1

}
,

(1.3) has a global solution, provided the initial values are sufficiently small. For other works
related to (1.3), see e.g. [1, 3, 7, 14] and the references therein. A class of variational
inequalities of Kirchhoff-type is studied in [28], where the authors establish the existence of
infinite radial solutions in RN , by the non-smooth critical point theory based on Szulkin
functionals. Before continuing the discussion of our setting, we also mention the work
[25], where the authors consider a wide class of evolutionary variational-hemivariational
inequalities of hyperbolic types, with the functional framework given in an evolution triple
of spaces. By exploiting the Rothe approximation method, the authors establish results
on existence, uniqueness, and regularity of solution to inequalities involving both a convex
potential and a locally Lipschitz superpotential. Now, the study of wave inequalities in the
whole space was first considered in [13] in the following form:

(1.4) ∂ttu−∆u ≥ |u|p in (0,∞)× RN .
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In [13], another critical exponent (namely, Kato exponent) was obtained in the following
form

pK(N) =
N + 1

N − 1
.

In [20], the authors generalize the result in [13] and point out the sharpness of pK(N). In
fact, it was shown that for N ≥ 2, we distinguish the following two cases:

(i) if 1 < p ≤ pK(N) and

(1.5)

∫
RN

∂tu(0, x) dx > 0,

then (1.4) admits no global weak solution;
(ii) if p > pK(N), then there are positive global solutions to (1.4) satisfying (1.5).

For other contributions related to hyperbolic inequalities in the whole space, see e.g. [9,
17, 19] and the references therein. Some nonexistence results for hyperbolic inequalities on
Riemannian manifolds can be found in [10, 18].
In [16], among other problems, the author considers the hyperbolic inequality

(1.6) ∂ttu−∆u ≥ |u|p in (0,∞)×K,

under the Dirichlet-type boundary condition

(1.7) u(t, x) ≥ 0, on (0,∞)× ∂K,

where K is the cone defined by

K = {(r, ω) : r > 0, ω ∈ Ω}
and Ω is a domain of SN−1 (N ≥ 3). It was shown that, if the condition

1 < p ≤ 1 +
2

s∗ + 1

holds, where

s∗ =
N − 2

2
+

√(
N − 2

2

)2

+ λ1

and λ1 is the first eigenvalue of the Laplace Beltrami operator on Ω, then problem (1.6)
under the boundary condition (1.7) has no nontrivial global weak solution. Notice that in
the special case K = RN

+ , one has λ1 = N − 1 and 1 + 2
s∗+1

= 1 + 2
N
.

Now, a natural question is to understand the wave equation or inequality on other unbounded
domains of RN . The study of blow-up for wave equation on exterior domains was initialized
in [26]. Namely, the author considers the inhomogeneous problem

(1.8) ∂ttu−∆u = |x|α|u|p in (0,∞)×Dc,

under the Neumann boundary condition

(1.9)
∂u

∂ν
(t, x) = f(x) on (0,∞)× ∂D,

where D is a smooth bounded set of RN , N ≥ 3, Dc is the complement of D, α > −2
and f(x) ≥ 0. In this case, it was shown that the critical exponent is equal to N+α

N−2
. More

precisely, it was shown that the following are the cases:

(i) if 1 < p < N+α
N−2

and f ̸≡ 0, then (1.8)-(1.9) admits no global solution;

(ii) if p > N+α
N−2

, (1.8)-(1.9) has global solutions for some f > 0.
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In [8], among other results, it was shown that p = N+α
N−2

belongs to the blow-up case. In [11],
the authors consider the system of wave inequalities{

∂ttu−∆u ≥ |x|a|v|p in (0,∞)×Dc,
∂ttv −∆v ≥ |x|b|u|q in (0,∞)×Dc,

(1.10)

where p, q > 1, (a, b) ≻ (−2,−2) and N ≥ 2, under three types of boundary conditions:
the Dirichlet-type condition:

(1.11) (u(t, x), v(t, x)) ⪰ (f(x), g(x)) on (0,∞)× ∂D;

the Neumann-type condition:

(1.12)

(
∂u

∂ν
(t, x),

∂v

∂ν
(t, x)

)
⪰ (f(x), g(x)) on (0,∞)× ∂D;

the mixed-type boundary condition:

(1.13)

(
u(t, x),

∂v

∂ν
(t, x)

)
⪰ (f(x), g(x)) on (0,∞)× ∂D,

where f, g ∈ L1(∂D) and
(∫

∂D f dσ,
∫
∂D g dσ

)
≻ (0, 0). It was shown that all the above

problems share the same critical behavior. Namely, we note that, if N = 2; or N ≥ 3 and
(1.14)

N < max

{
sgn

(∫
∂D

f dσ

)
× 2p(q + 1) + pb+ a

pq − 1
, sgn

(∫
∂D

g dσ

)
× 2q(p+ 1) + qa+ b

pq − 1

}
,

then we get the following conclusions:

(i) problem (1.10)-(1.11) admits no global weak solution if f, g ≥ 0;
(ii) problem (1.10)-(1.12) admits no global weak solution;
(iii) problem (1.10)-(1.13) admits no global weak solution if p > 2 and f ≥ 0.

Moreover, if D is a ball, the sign condition for f and g can be erased in (i) and (iii). Notice
that the sharpness of (1.14) was justified in [11].

As far as we know, the study of the large-time behavior of evolution inequalities in an
exterior domain of the half-space was not addressed in the literature. Motivated by this fact
and the above mentioned works, problem (1.1) is investigated in this paper.

Before stating our obtained results, let us mention in which sense the solutions to (1.1) are
considered. Just before, let

D = (0,∞)× Ω, Γ0 = (0,∞)× Γ0, Γ1 = (0,∞)× Γ1.

We introduce the functional space

Φ =

{
φ ∈ C2

c (D) : φ ≥ 0, φ|Γi = 0,
∂φ

∂νi
|Γi ≤ 0, i = 0, 1

}
,

where C2
c (D) is the space of C2 functions compactly supported in D. Notice that Γi ⊂ D for

all i = 0, 1.

Definition 1.1. We say that (u, v) ∈ Lq
loc(D)×Lp

loc(D) is a global weak solution to (1.1), if

(1.15)

∫
D

|v|pφdx dt−
∫
Γ1

a(t)
∂φ

∂ν1
f(x) dσ1 dt ≤

∫
D

u (∂ttφ−∆φ) dx dt
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and

(1.16)

∫
D

|u|qφdx dt−
∫
Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt ≤

∫
D

v (∂ttφ−∆φ) dx dt

for every φ ∈ Φ.

For h ∈ L1(Γ1), we introduce the integral

Ih =

∫
Γ1

xNh(x) dσ1.

Then, our main result for problem (1.1) is the following existence result.

Theorem 1.2. Assume that a(t) ∼ tα and b(t) ∼ tβ near infinity, where α, β ∈ R. Let
f, g ∈ L1(Γ1) be such that (If , Ig) ≻ (0, 0). If the following condition is satisfied

(1.17) N + 1 < max

{
sgn(If )

(
α +

2p(q + 1)

pq − 1

)
, sgn(Ig)

(
β +

2q(p+ 1)

pq − 1

)}
,

then (1.1) admits no global weak solution.

Remark 1.3. Notice that the condition (1.17) is equivalent to the following assumptions

If > 0 and N + 1 < α+
2p(q + 1)

pq − 1
,

or

Ig > 0 and N + 1 < β +
2q(p+ 1)

pq − 1
.

Remark 1.4. Observe that for suitable values K1, K2 > 0, we get that

(u, v)(t, x) =
(
K1(t+ 1)

−2(p+1)
pq−1 , K2(t+ 1)

−2(q+1)
pq−1

)
is a global solution to (1.1) with f = g ≡ 0. This shows the necessity of the assumption
(If , Ig) ≻ (0, 0) in Theorem 1.2.

In the special case a = b ≡ 1 (so α = β = 0), we deduce from Theorem 1.2 the following
nonexistence result.

Corollary 1.5. Let a = b ≡ 1 and f, g ∈ L1(Γ1) be such that (If , Ig) ≻ (0, 0). If the
following condition is satisfied

(1.18) N + 1 <
2

pq − 1
max {sgn(If )p(q + 1), sgn(Ig)q(p+ 1)} ,

then (1.1) admits no global weak solution.

Remark 1.6. At this time, we do not know whether the condition (1.17) is sharp or not.
However, in the special case a = b ≡ 1, our condition (1.18) is sharp. Namely, assume that

(1.19) N + 1 >
2

pq − 1
max {p(q + 1), q(p+ 1)} .

Furthermore, let
(u∗, v∗)(x) = ϵxN(|x|δ1 , |x|δ2),

where δ2 = dδ1, with

(1.20)
p+ 1 + p(q + 1)

pq − 1
< δ1 < max {N, (N − 1)p− 1} ,
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(1.21)
1

p
+

p+ 1

δ1p
< d < max

{
N

δ1
, q − q + 1

δ1

}
and

(1.22) 0 < ϵ ≤ min
{
(δ1(N − δ1))

1
p−1 , (δ2(N − δ2))

1
q−1

}
.

Then, we can check that (u∗, v∗) is a stationary solution to (1.1) for suitable f, g ≥ 0. Notice
that under the condition (1.19), the set of values δ1 satisfying (1.20) is non-empty. Moreover,
under the condition (1.20), the set of values d satisfying (1.21) is non-empty. Notice also
that from (1.20) and (1.21), we have 0 < δi < N , i = 1, 2. Thus, the set of values ϵ satisfying
(1.22) is non-empty.

If p = q in Corollary 1.5, we have the following nonexistence result.

Theorem 1.7. Let a = b ≡ 1, p = q and f, g ∈ L1(Γ1) be such that (If , Ig) ≻ (0, 0). If the
following condition is satisfied

(1.23) N + 1 =
2p

p− 1
,

then (1.1) admits no global weak solution.

Clearly, Corollary 1.5 and Theorem 1.7 yield nonexistence results for the corresponding
stationary problem 

−∆u ≥ |v|p in Ω,
−∆v ≥ |u|q in Ω,
(u(x), v(x)) ⪰ (0, 0) on Γ0,
(u(x), v(x)) ⪰ (f(x), g(x)) on Γ1.

(1.24)

We state this result in the form of the following corollary.

Corollary 1.8. Let f, g ∈ L1(Γ1) be such that (If , Ig) ≻ (0, 0). If one of the following
conditions is satisfied:

(i) (1.18) holds;
(ii) p = q and (1.23) holds,

then (1.24) admits no weak solution.

Remark 1.9. Consider the case of a single inequality ∂ttu−∆u ≥ |u|p in (0,∞)× Ω,
u(t, x) ≥ 0 on (0,∞)× Γ0,
u(t, x) ≥ f(x) on (0,∞)× Γ1.

(1.25)

By Corollary 1.5 and Theorem 1.7, we deduce that, if If > 0 and

1 < p ≤ N + 1

N − 1
,

then (1.25) admits no global weak solution. Moreover, by Remark 1.6, we deduce that N+1
N−1

is the critical exponent (in the sense of Fujita) for problem (1.25). The same result holds for
the corresponding stationary problem −∆u ≥ |u|p in Ω,

u(x) ≥ 0 on Γ0,
u(x) ≥ f(x) on Γ1.
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It is interesting to observe that N+1
N−1

is exactly the Kato critical exponent for (1.4).

The rest of the paper is organized as follows. In Section 2, we establish some estimates
that will play a crucial role in the proof of our main results. Section 3 is devoted to the proof
of Theorems 1.2 and 1.7. Finally, some open questions are raised in Section 4.

2. Preliminaries

Throughout this paper, the symbol C denotes always a generic positive constant, which is
independent of the scaling parameter T and the solutions u, v. Its value could be changed
from one line to another. First we derive two useful a priori estimates of integral type, then
we introduce some appropriate test functions to obtain other auxiliary estimates.

2.1. A priori estimates. For m > 1 and φ ∈ Φ, let

(2.1) Im(φ) =

∫
D

φ
−1

m−1 |∂ttφ|
m

m−1 dx dt

and

(2.2) Jm(φ) =

∫
D

φ
−1

m−1 |∆φ|
m

m−1 dx dt.

The following a priori estimates for problem (1.1) will play a crucial role in the proof of
Theorems 1.2 and 1.7.

Lemma 2.1. Let (u, v) ∈ Lq
loc(D)× Lp

loc(D) be a global weak solution to (1.1). Assume that
there exists φ ∈ Φ such that

(2.3)

∫
Γ1

a(t)
∂φ

∂ν1
f(x) dσ1 dt ≤ 0.

Then, we have

(2.4) −
∫
Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt ≤ C

(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) q
pq−1

(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) pq
pq−1

,

provided that Im(φ) < ∞ and Jm(φ) < ∞, m ∈ {p, q}.

Proof. Let (u, v) ∈ Lq
loc(D)× Lp

loc(D) be a global weak solution to (1.1). Let φ ∈ Φ be such
that (2.3) holds. Using (1.15) and (2.3), we obtain

(2.5)

∫
D

|v|pφdx dt ≤
∫
D

|u||∂ttφ| dx dt+
∫
D

|u||∆φ| dx dt.

On the other hand, by means of Hölder’s inequality, we get

(2.6)

∫
D

|u||∂ttφ| dx dt ≤
(∫

D

|u|qφdx dt

) 1
q

Iq(φ)
q−1
q

and

(2.7)

∫
D

|u||∆φ| dx dt ≤
(∫

D

|u|qφdx dt

) 1
q

Jq(φ)
q−1
q .

In view of the inequalities (2.5), (2.6) and (2.7), we obtain that

(2.8)

∫
D

|v|pφdx dt ≤
(∫

D

|u|qφdx dt

) 1
q (

Iq(φ)
q−1
q + Jq(φ)

q−1
q

)
.



8 M. JLELI, B. SAMET, AND C. VETRO

Similarly, by (1.16) and using Hölder’s inequality, we deduce that

(2.9)

∫
D

|u|qφdx dt−
∫
Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt ≤

(∫
D

|v|pφdx dt

) 1
p (

Ip(φ)
p−1
p + Jp(φ)

p−1
p

)
.

Combining (2.8) with (2.9), we get the following inequality

(2.10)

∫
D

|u|qφdx dt−
∫
Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt

≤
(∫

D

|u|qφdx dt

) 1
pq (

Iq(φ)
q−1
q + Jq(φ)

q−1
q

) 1
p
(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

)
.

On the other hand, by means of ε-Young inequality with 0 < ε < 1, we have

(2.11)

(∫
D

|u|qφdx dt

) 1
pq (

Iq(φ)
q−1
q + Jq(φ)

q−1
q

) 1
p
(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

)
≤ ε

∫
D

|u|qφdx dt+ C
(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) q
pq−1

(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) pq
pq−1

.

Thus, it follows from (2.10) and (2.11) that

(1− ε)

∫
D

|u|qφdx dt−
∫
Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt

≤ C
(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) q
pq−1

(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) pq
pq−1

.

Since 0 < ε < 1, we conclude that (2.4) holds true. □

Proceeding as in the proof of Lemma 2.1, we obtain the following a priori estimate.

Lemma 2.2. Let (u, v) ∈ Lq
loc(D)× Lp

loc(D) be a global weak solution to (1.1). Assume that
there exists φ ∈ Φ such that ∫

Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt ≤ 0.

Then, we get

−
∫
Γ1

a(t)
∂φ

∂ν1
f(x) dσ1 dt ≤ C

(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) p
pq−1

(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) pq
pq−1

,

provided that Im(φ) < ∞ and Jm(φ) < ∞, m ∈ {p, q}.

2.2. Test functions and some estimates. We introduce the function

(2.12) H(x) = xN

(
1− |x|−N

)
, x = (x1, x2, · · · , xN) ∈ Ω.

Now, it can be easily seen that H ≥ 0 and it satisfies the following{
−∆H = 0 in Ω,
H = 0 on Γ0 ∪ Γ1.

(2.13)

We need also two cut-off functions. So, let ξ, η ∈ C∞(R) be such that

(2.14) 0 ≤ ξ ≤ 1, ξ(s) = 1 if |s| ≤ 1, ξ(s) = 0 if |s| ≥ 2.

and

(2.15) η ≥ 0, supp(η) ⊂⊂ (0, 1).
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For T > 0 and sufficiently large ℓ, we introduce the functions

ρ(t) = η

(
t

T θ

)ℓ

, t > 0,(2.16)

µ(x) = H(x)ξ

(
|x|2

T 2

)ℓ

, x ∈ Ω,

and

(2.17) φ(t, x) = ρ(t)µ(x), (t, x) ∈ D.

Here, θ > 0 is a constant to be chosen later.

Lemma 2.3. For sufficiently large T and ℓ, the function φ defined by (2.17), belongs to Φ.

Proof. It is clear that φ ≥ 0 and for sufficiently large ℓ, we have φ ∈ C2
c (D). Moreover, by

(2.13), we have φ|Γi = 0 for all i = 0, 1. Hence, we need just to show that

(2.18)
∂φ

∂νi

∣∣∣∣
Γi

≤ 0, i = 0, 1.

On the other hand, we have

∇µ(x) = ∇

(
H(x)ξ

(
|x|2

T 2

)ℓ
)

= ξ

(
|x|2

T 2

)ℓ

∇H(x) +H(x)∇

[
ξ

(
|x|2

T 2

)ℓ
]

= ξ

(
|x|2

T 2

)ℓ ((
1− |x|−N

)
eN +NxN |x|−N−2x

)
+H(x)∇

[
ξ

(
|x|2

T 2

)ℓ
]
,(2.19)

where eN = (0, · · · , 0, 1) ∈ RN . Then, by (2.19), for x ∈ Γ0, we get

∇µ(x) = ξ

(
|x|2

T 2

)ℓ (
1− |x|−N

)
eN ,

which yields

∂µ

∂ν0
(x) = −ξ

(
|x|2

T 2

)ℓ (
1− |x|−N

)
≤ 0.

Thus, by (2.15) and (2.17), we obtain

∂φ

∂ν0
(t, x) = ρ(t)

∂µ

∂ν0
(x) ≤ 0, (t, x) ∈ Γ0.

Again, by (2.19), for x ∈ Γ1 we get

∇µ(x) = NxNξ

(
1

T 2

)ℓ

x.

On the other hand, by (2.14), for sufficiently large T , we deduce that

ξ

(
1

T 2

)
= 1.
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Then, we note that for sufficiently large T , the following is the case

∇µ(x) = NxNx,

which yields

(2.20)
∂φ

∂ν1
(t, x) = −NxNρ(t) ≤ 0, (t, x) ∈ Γ1.

Thus (2.18) is proved. □

Lemma 2.4. Let a(t) ∼ tα near infinity, α ∈ R and If ≥ 0. Then, for sufficiently large T ,
the following inequality holds

(2.21) −
∫
Γ1

a(t)
∂φ

∂ν1
f(x) dσ1 dt ≥ CT θ(α+1)If .

Proof. In view of (2.20), we obtain

−
∫
Γ1

a(t)
∂φ

∂ν1
f(x) dσ1 dt = N

∫
Γ1

a(t)ρ(t)xNf(x) dσ1 dt

= N

(∫ ∞

0

a(t)η

(
t

T θ

)ℓ

dt

)
If .(2.22)

On the other hand, by (2.15), for sufficiently large T , we have (notice that a(t) ≥ 0)∫ ∞

0

a(t)η

(
t

T θ

)ℓ

dt =

∫ T θ

0

a(t)η

(
t

T θ

)ℓ

dt

≥
∫ T θ

Tθ

2

a(t)η

(
t

T θ

)ℓ

dt

≥ C

∫ T θ

Tθ

2

tαη

(
t

T θ

)ℓ

dt

= CT θ(α+1)

∫ 1

1
2

sαη(s)ℓ ds,

and hence we conclude that

(2.23)

∫ ∞

0

a(t)η

(
t

T θ

)ℓ

dt ≥ CT θ(α+1).

Combining (2.22) with (2.23), we obtain the inequality (2.21). □

Following the proof of Lemma 2.4, we deduce the following estimate.

Lemma 2.5. Let b(t) ∼ tβ near infinity, β ∈ R and Ig ≥ 0. Then, for sufficiently large T ,
the following inequality holds

−
∫
Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt ≥ CT θ(β+1)Ig.

We give next result with complete proof.

Lemma 2.6. Let m > 1. For sufficiently large T and ℓ, the following inequality holds

(2.24) Im(φ) ≤ CTN+1−θ(m+1
m−1).
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Proof. By (2.1) and (2.17), we have

(2.25) Im(φ) =

(∫
Ω

µ(x) dx

)∫ ∞

0

ρ(t)
−1

m−1 |ρ′′(t)|
m

m−1 dt.

On the other hand, we have∫
Ω

µ(x) dx =

∫
Ω

H(x)ξ

(
|x|2

T 2

)ℓ

dx

=

∫
Ω

xN

(
1− |x|−N

)
ξ

(
|x|2

T 2

)ℓ

dx.

Using (2.14), for sufficiently large T , we obtain the following chain of inequalities∫
Ω

µ(x) dx =

∫
1<|x|<

√
2T,xN>0

xN

(
1− |x|−N

)
ξ

(
|x|2

T 2

)ℓ

dx

≤
∫
1<|x|<

√
2T,xN>0

xN dx

≤
∫
1<|x|<

√
2T,xN>0

|x| dx

≤
∫
1<|x|<

√
2T

|x| dx

≤ CTN+1.(2.26)

Moreover, by (2.15), for sufficiently large ℓ, we have∫ ∞

0

ρ(t)
−1

m−1 |ρ′′(t)|
m

m−1 dt =

∫ T θ

0

η

(
t

T θ

) −ℓ
m−1

∣∣∣∣∣ d2dt2η
(

t

T θ

)ℓ
∣∣∣∣∣

m
m−1

≤ CT
−2θm
m−1

∫ T θ

0

η

(
t

T θ

)ℓ− 2m
m−1

dt

= CT
−2θm
m−1

+θ

∫ 1

0

η(s)ℓ−
km
m−1 ds,

that is,

(2.27)

∫ ∞

0

ρ(t)
−1

m−1 |ρ′′(t)|
m

m−1 dt ≤ CT−θ(m+1
m−1).

Hence, (2.24) follows from (2.25), (2.26) and (2.27). □

Now, we provide an estimate for Jm(φ).

Lemma 2.7. Let m > 1. For sufficiently large T and ℓ, the following inequality holds

(2.28) Jm(φ) ≤ CTN+1− 2m
m−1

+θ.

Proof. By (2.2) and (2.17), we have

(2.29) Jm(φ) =

(∫ ∞

0

ρ(t) dt

)∫
Ω

µ(x)
−1

m−1 |∆µ(x)|
m

m−1 dx.
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On the other hand, by (2.15), we have∫ ∞

0

ρ(t) dt =

∫ ∞

0

η

(
t

T θ

)ℓ

dt

=

∫ T θ

0

η

(
t

T θ

)ℓ

dt

= T θ

∫ 1

0

η(s)ℓ ds,

that gives us

(2.30)

∫ ∞

0

ρ(t) dt = CT θ.

Moreover, using (2.13), for x ∈ Ω we obtain

∆µ(x) = ∆

(
H(x)ξ

(
|x|2

T 2

)ℓ
)

= ξ

(
|x|2

T 2

)ℓ

∆H(x) +H(x)∆

[
ξ

(
|x|2

T 2

)ℓ
]
+ 2∇

[
ξ

(
|x|2

T 2

)ℓ
]
· ∇H(x)

= H(x)∆

[
ξ

(
|x|2

T 2

)ℓ
]
+ 2∇

[
ξ

(
|x|2

T 2

)ℓ
]
· ∇H(x),(2.31)

where “·” denotes the inner product in RN . On the other hand, by (2.14), for x ∈ Ω with
T < |x| <

√
2T , we have

(2.32)

∣∣∣∣∣H(x)∆

[
ξ

(
|x|2

T 2

)ℓ
]∣∣∣∣∣ ≤ CT−2H(x)ξ

(
|x|2

T 2

)ℓ−2

≤ CT−2ξ

(
|x|2

T 2

)ℓ−2

xN

and

∇

[
ξ

(
|x|2

T 2

)ℓ
]
· ∇H(x) = 2ℓT−2ξ

(
|x|2

T 2

)ℓ−1

ξ′
(
|x|2

T 2

)
x ·
((
1− |x|−N

)
eN +NxN |x|−N−2x

)
= 2ℓT−2ξ

(
|x|2

T 2

)ℓ−1

ξ′
(
|x|2

T 2

)((
1− |x|−N

)
xN +NxN |x|−N

)
= 2ℓT−2ξ

(
|x|2

T 2

)ℓ−1

ξ′
(
|x|2

T 2

)
xN

(
1 + (N − 1)|x|−N

)
,

which yield

(2.33)

∣∣∣∣∣∇
[
ξ

(
|x|2

T 2

)ℓ
]
· ∇H(x)

∣∣∣∣∣ ≤ CT−2ξ

(
|x|2

T 2

)ℓ−2

xN .
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Hence, by (2.14), (2.31), (2.32) and (2.33), for sufficiently large T and ℓ, we obtain∫
Ω

µ(x)
−1

m−1 |∆µ(x)|
m

m−1 dx

≤ CT
−2m
m−1

∫
x∈Ω,T<|x|<

√
2T

xN

(
1− |x|−N

) −1
m−1 ξ

(
|x|2

T 2

)ℓ− 2m
m−1

dx

≤ CT
−2m
m−1

∫
x∈Ω,T<|x|<

√
2T

xNξ

(
|x|2

T 2

)ℓ− 2m
m−1

dx

= CTN+1− 2m
m−1

∫
1<|y|<

√
2,yN>0

yNξ(|y|2)ℓ−
2m
m−1 dy,

that is,

(2.34)

∫
Ω

µ(x)
−1

m−1 |∆µ(x)|
m

m−1 dx ≤ CTN+1− 2m
m−1 .

Hence, (2.28) follows from (2.29), (2.30) and (2.34). □

The following lemma in some sense is a byproduct of Lemmas 2.6 and 2.7.

Lemma 2.8. Let m > 1 and θ = 1. For sufficiently large T and ℓ, the following inequality
holds

(2.35) Im(φ)
m−1
m + Jm(φ)

m−1
m ≤ CT (N+2− 2m

m−1)(
m−1
m ).

Proof. By (2.24) and (2.28), for sufficiently large T and ℓ, there holds

Im(φ)
m−1
m + Jm(φ)

m−1
m ≤ C

(
T λ1 + T λ2

)
,

where

λ1 =

(
N + 1 + θ

(
−m− 1

m− 1

))(
m− 1

m

)
and

λ2 =

(
N + 1− 2m

m− 1
+ θ

)(
m− 1

m

)
.

Observe that

λ2 − λ1 = 2(θ − 1).

So, taking θ = 1, we obtain

λ1 = λ2 =

(
N + 2− 2m

m− 1

)(
m− 1

m

)
,

which yields (2.35). □

Appealing to Lemma 2.8 we can obtain the following result.

Lemma 2.9. Let θ = 1. For sufficiently large T and ℓ, the following inequality holds

(2.36)
(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) q
pq−1

(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) pq
pq−1 ≤ CT

1
pq−1

((N+2)(pq−1)−2q(p+1)).
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Proof. Using Lemma 2.8 with m = q, we obtain

(2.37)
(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) q
pq−1 ≤ CT (N+2− 2q

q−1)(
q−1
pq−1).

Similarly, using Lemma 2.8 with m = p, we obtain

(2.38)
(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) pq
pq−1 ≤ CT (N+2− 2p

p−1)(
(p−1)q
pq−1 ).

Hence, (2.36) follows from (2.37) and (2.38). □

Similarly, using again Lemma 2.8, we get the following estimate.

Lemma 2.10. Let θ = 1. For sufficiently large T and ℓ, the following inequality holds(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) p
pq−1

(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) pq
pq−1 ≤ CT

1
pq−1

((N+2)(pq−1)−2p(q+1)).

For the study of the critical case, we need to introduce another cut-off function. So, let
Λ : R → [0, 1] be a smooth function satisfying the conditions:

(2.39) Λ(s) = 1 if s ≤ 0, Λ(s) = 0 if s ≥ 1.

For T > 0 and sufficiently large ℓ, we consider the function

µ∗(x) = H(x)Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ

, x ∈ Ω,

where H is the function defined by (2.12). Hence, we introduce the new test function

(2.40) φ∗(t, x) = ρ(t)µ∗(x), (t, x) ∈ D,

where ρ is the function defined by (2.16).

Lemma 2.11. For sufficiently large T and ℓ, the function φ∗ defined by (2.40) belongs to Φ.

Proof. We need just to show that

(2.41)
∂φ∗

∂νi

∣∣∣∣
Γi

≤ 0, i = 0, 1.

We have the following calculations

∇µ∗(x) = ∇

H(x)Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ


= Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ

∇H(x) +H(x)∇

Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ


= Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ ((
1− |x|−N

)
eN +NxN |x|−N−2x

)
+H(x)∇

Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ
 .(2.42)
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Then, by (2.42), for x ∈ Γ0 we get

∇µ∗(x) = Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ (
1− |x|−N

)
eN ,

which yields

∂µ∗

∂ν0
(x) = −Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ (
1− |x|−N

)
≤ 0.

Thus, by (2.15) and (2.40), we deduce that

∂φ∗

∂ν0
(t, x) = ρ(t)

∂µ∗

∂ν0
(x) ≤ 0, (t, x) ∈ Γ0.

Again, by (2.42), for x ∈ Γ1 we get

∇µ∗(x) = NxNΛ

 ln
(

1√
T

)
ln(

√
T )

ℓ

x.

On the other hand, by (2.39), for sufficiently large T , we conclude that

Λ

 ln
(

1√
T

)
ln(

√
T )

 = 1.

Then, for sufficiently large T , we deduce that

∇µ∗(x) = NxNx,

which yields

(2.43)
∂φ∗

∂ν1
(t, x) = −NxNρ(t) ≤ 0, (t, x) ∈ Γ1.

Thus the conditions in (2.41) are proved. □

Using (2.43) and following the proof of Lemma 2.4, we obtain the following estimates.

Lemma 2.12. Assume that If ≥ 0. Then, for sufficiently large T , the following inequality
holds

−
∫
Γ1

∂φ∗

∂ν1
f(x) dσ1 dt ≥ CT θIf .

Lemma 2.13. Assume that Ig ≥ 0. Then, for sufficiently large T , the following inequality
holds

−
∫
Γ1

∂φ∗

∂ν1
g(x) dσ1 dt ≥ CT θIg.

For the next result, we provide complete proof.

Lemma 2.14. Let m > 1. For sufficiently large T and ℓ, the following inequality holds

(2.44) Im(φ∗) ≤ CTN+1−θ(m+1
m−1).
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Proof. By (2.1) and (2.40), we have

(2.45) Im(φ∗) =

(∫
Ω

µ∗(x) dx

)∫ ∞

0

ρ(t)
−1

m−1 |ρ′′(t)|
m

m−1 dt.

On the other hand, we have

∫
Ω

µ∗(x) dx =

∫
Ω

H(x)Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ

dx

=

∫
Ω

xN

(
1− |x|−N

)
Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ

dx.

Using (2.39) and the fact that 0 ≤ Λ ≤ 1, for sufficiently large T , we obtain the followig
chain of inequalities

∫
Ω

µ∗(x) dx =

∫
1<|x|<T,xN>0

xN

(
1− |x|−N

)
Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ

dx

≤
∫
1<|x|<T,xN>0

xNΛ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ

dx

≤
∫
1<|x|<T,xN>0

xN dx

≤ CTN+1.(2.46)

Hence, inequalty (2.44) follows from (2.45), (2.46) and (2.27). □

Lemma 2.15. Let m = N+1
N−1

. For sufficiently large T and ℓ, the following holds

(2.47) Jm(φ∗) ≤ CT θ(lnT )
−2

N−1 .

Proof. By (2.2) and (2.40), we have

(2.48) Jm(φ) =

(∫ ∞

0

ρ(t) dt

)∫
Ω

µ∗(x)
−1

m−1 |∆µ∗(x)|
m

m−1 dx.
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Moreover, using (2.13), for x ∈ Ω, we obtain

∆µ∗(x) = ∆

H(x)Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ


= Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ

∆H(x) +H(x)∆

Λ
 ln

(
|x|√
T

)
ln(

√
T )

ℓ


+2∇

Λ
 ln

(
|x|√
T

)
ln(

√
T )

ℓ
 · ∇H(x)

= H(x)∆

Λ
 ln

(
|x|√
T

)
ln(

√
T )

ℓ
+ 2∇

Λ
 ln

(
|x|√
T

)
ln(

√
T )

ℓ
 · ∇H(x).(2.49)

On the other hand, by (2.39), for x ∈ Ω with
√
T < |x| < T , we have

(2.50)

∣∣∣∣∣∣∣H(x)∆

Λ
 ln

(
|x|√
T

)
ln(

√
T )

ℓ

∣∣∣∣∣∣∣ ≤ C(lnT )−1|x|−2Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ−2

xN

and

∇

Λ
 ln

(
|x|√
T

)
ln(

√
T )

ℓ
 · ∇H(x)

=
ℓ

|x|2 ln
√
T
Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ−1

Λ′

 ln
(

|x|√
T

)
ln(

√
T )

x ·
((
1− |x|−N

)
eN +NxN |x|−N−2x

)

=
ℓ

ln
√
T
Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ−1

Λ′

 ln
(

|x|√
T

)
ln(

√
T )

 |x|−2
((
1− |x|−N

)
xN +NxN |x|−N

)

=
ℓ

ln
√
T
Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ−1

Λ′

 ln
(

|x|√
T

)
ln(

√
T )

 |x|−2xN

(
1 + (N − 1)|x|−N

)
.

It follows that

(2.51)

∣∣∣∣∣∣∣∇
Λ
 ln

(
|x|√
T

)
ln(

√
T )

ℓ
 · ∇H(x)

∣∣∣∣∣∣∣ ≤ C(lnT )−1|x|−2Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ−2

xN .
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Hence, involving (2.49), (2.50) and (2.51) we deduce that∫
Ω

µ∗(x)
−1

m−1 |∆µ∗(x)|
m

m−1 dx

≤ C(lnT )
−m
m−1

∫
x∈Ω,

√
T<|x|<T

xN |x|
−2m
m−1

(
1− |x|−N

) −1
m−1 Λ

 ln
(

|x|√
T

)
ln(

√
T )

ℓ− 2m
m−1

dx

≤ C(lnT )
−m
m−1

∫
x∈Ω,

√
T<|x|<T

|x|1−
2m
m−1 dx

≤ C(lnT )
−m
m−1

∫ T

r=
√
T

rN− 2m
m−1 dr

= C(lnT )
−m
m−1

∫ T

r=
√
T

r−1 dr

≤ C(lnT )
−1

m−1 ,

which gives us the inequality

(2.52)

∫
Ω

µ∗(x)
−1

m−1 |∆µ∗(x)|
m

m−1 dx ≤ C(lnT )
−2

N−1 .

Hence, we can conclude that the estimate (2.47) follows from (2.48), (2.52) and (2.30). □

3. Proof of the main results

In this section, we prove Theorems 1.2 and 1.7. We recall that both these results concern
the nonexistence of global weak solutions to (1.1).

Proof of Theorem 1.2. We argue by contradiction, supposing that (u, v) ∈ Lq
loc(D)×Lp

loc(D)
is a global weak solution to (1.1). We first consider the case

(3.1) If > 0 and N + 1 < α+
2p(q + 1)

pq − 1
.

For sufficiently large T and ℓ, let φ be the test function defined by (2.17). Since Ig ≥ 0, by
Lemma 2.5, we get ∫

Γ1

b(t)
∂φ

∂ν1
g(x) dσ1 dt ≤ 0.

Hence, by Lemmas 2.2, 2.3 and 2.4, we obtain

T θ(α+1)If ≤ C
(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) p
pq−1

(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) pq
pq−1

.

Taking θ = 1 in the above inequality, we deduce from Lemma 2.10 that

(3.2) If ≤ CT λ,

where

λ =
1

pq − 1
((N + 2)(pq − 1)− 2p(q + 1))− α− 1.

Observe that by (3.1), we have If > 0 and λ < 0. Hence, passing to the limit as T → ∞ in
(3.2), we obtain a contradiction with the assumption that If > 0.
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Now, we focus on the case

(3.3) Ig > 0 and N + 1 < β +
2q(p+ 1)

pq − 1
.

As in the previous case, for sufficiently large T and ℓ, we use the same test function φ defined
by (2.17). Since If ≥ 0, by Lemma 2.4, we get∫

Γ1

a(t)
∂φ

∂ν1
f(x) dσ1 dt ≤ 0.

Hence, by Lemmas 2.1, 2.3 and 2.5, we obtain

T θ(β+1)Ig ≤ C
(
Iq(φ)

q−1
q + Jq(φ)

q−1
q

) q
pq−1

(
Ip(φ)

p−1
p + Jp(φ)

p−1
p

) pq
pq−1

.

Taking θ = 1 in the above inequality, we deduce from Lemma 2.9 that

(3.4) Ig ≤ CT κ,

where

κ =
1

pq − 1
((N + 2)(pq − 1)− 2q(p+ 1))− β − 1.

On the other hand, in view of (3.3), we have Ig and κ < 0. Hence, passing to the limit as
T → ∞ in (3.4), we obtain a contradiction with the assumption that Ig > 0. This completes
the proof of Theorem 1.2. □

Now, we present the complete proof of Theorem 1.7.

Proof of Theorem 1.7. We use also the contradiction argument. Namely, suppose that (u, v) ∈
Lp
loc(D)×Lp

loc(D) is a global weak solution to (1.1). Without restriction of the generality, we
may assume that If > 0. At this time, for sufficiently large T and ℓ, we use the test function
φ∗ defined by (2.40). Since Ig ≥ 0, by Lemma 2.13, we get∫

Γ1

∂φ∗

∂ν1
g(x) dσ1 dt ≤ 0.

Hence, by Lemma 2.2 (with a = b ≡ 1 and p = q), Lemma 2.11 and Lemma 2.12, we obtain

T θIf ≤ C
(
Ip(φ∗)

p−1
p + Jp(φ∗)

p−1
p

) p
p−1

,

which yields

(3.5) T θIf ≤ C (Ip(φ∗) + Jp(φ∗)) .

On the other hand, by Lemma 2.14 (with m = p) and Lemma 2.15 (with m = p; notice that
by (1.23), we have p = N+1

N−1
), we obtain

(3.6) Ip(φ∗) + Jp(φ∗) ≤ C
(
TN+1−θ( p+1

p−1) + T θ(lnT )
−2

N−1

)
.

Then, in view of (3.5) and (3.6), we get

(3.7) If ≤ C
(
TN+1− 2θp

p−1 + (lnT )
−2

N−1

)
.

Thus, taking θ > (N+1)(p−1)
2p

= 1 (i.e., N +1− 2θp
p−1

< 0) and passing to the limit as T → ∞ in

(3.7), we obtain a contradiction with the assumption that If > 0. This completes the proof
of Theorem 1.7. □
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4. Further remarks

In Theorem 1.2, the critical case

(4.1) N ≥ 2, N + 1 = max

{
sgn(If )

(
α +

2p(q + 1)

pq − 1

)
, sgn(Ig)

(
β +

2q(p+ 1)

pq − 1

)}
for system (1.1) is not completely investigated here. Namely, by Corollary 1.5 and Theorem
1.7, we know only that, if p = q and α = β = 0, then (4.1) belongs to blow-up case. It should
be interesting to decide whether in general, the critical curve (4.1) in p&q plan belongs to
the blow-up situation.

In Theorem 1.2, the sharpness of the condition (1.17) was established only in the special
case a = b ≡ 1 (see Remark 1.6). It should be interesting to study the existence of global
solutions to system (1.1) in the general case when

N + 1 > max

{
sgn(If )

(
α +

2p(q + 1)

pq − 1

)
, sgn(Ig)

(
β +

2q(p+ 1)

pq − 1

)}
.

Acknowledgments

The authors thank the editor and reviewers for providing constructive feedback to improve
our manuscript. The third author is supported by the research fund of University of Palermo:
“FFR 2023 Calogero Vetro”.

Declarations

Ethical Approval Not applicable.
Competing interests The authors read and approved the final manuscript. The authors
have no relevant financial or non-financial interests to disclose.
Authors’ contributions M.J., B.S. and C.V. wrote the main manuscript text. All authors
reviewed the manuscript.
Funding The authors declare that no funds, grants, or other support were received during
the preparation of this manuscript.
Availability of data and materials This paper has no associated data and material.

References

[1] R. Agemi, Y. Kurokawa, H. Takamura, Critical curve for p − q systems of nonlinear wave equations in
three space dimensions, J. Differential Equations. 167 (2000) 87–133.

[2] D. Del Santo, V. Georgiev, E. Mitidieri, Global existence of the solutions and formation of singularities
for a class of hyperbolic systems. Geometrical optics and related topics, Progr. Nonlinear Diff. Equ.
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