
J. Math. Anal. Appl. 526 (2023) 127325
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

On the critical curve for systems of hyperbolic inequalities in an 

exterior domain of the half-space

Mohamed Jleli a, Bessem Samet a, Calogero Vetro b,∗

a Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
b Department of Mathematics and Computer Science, University of Palermo, Via Archirafi no. 34, 90123 
Palermo, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 January 2023
Available online 14 April 2023
Submitted by G.M. Coclite

Keywords:
Hyperbolic inequalities
Exterior domain
Half-space
Blow-up
Wave equations and inequalities

We establish blow-up results for a system of semilinear hyperbolic inequalities in 
an exterior domain of the half-space. The considered system is investigated under 
an inhomogeneous Dirichlet-type boundary condition depending on both time and 
space variables. In certain cases, an optimal criterium of Fujita-type is derived. Our 
results yield naturally sharp nonexistence criteria for the corresponding stationary 
wave system and equation.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Test functions and some estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4. Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Ethical approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

* Corresponding author.
E-mail addresses: jleli@ksu.edu.sa (M. Jleli), bsamet@ksu.edu.sa (B. Samet), calogero.vetro@unipa.it (C. Vetro).
https://doi.org/10.1016/j.jmaa.2023.127325
0022-247X/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jmaa.2023.127325
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2023.127325&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jleli@ksu.edu.sa
mailto:bsamet@ksu.edu.sa
mailto:calogero.vetro@unipa.it
https://doi.org/10.1016/j.jmaa.2023.127325
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2 M. Jleli et al. / J. Math. Anal. Appl. 526 (2023) 127325
1. Introduction

In this paper, we consider a system of wave inequalities in an exterior domain of the half-space, under 
inhomogeneous Dirichlet-type boundary conditions. Let N ≥ 2, we study the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ttu− Δu ≥ |v|p in (0,∞) × Ω,

∂ttv − Δv ≥ |u|q in (0,∞) × Ω,

(u(t, x), v(t, x)) � (0, 0) on (0,∞) × Γ0,

(u(t, x), v(t, x)) � (a(t)f(x), b(t)g(x)) on (0,∞) × Γ1,

(1.1)

where Ω = {x ∈ RN
+ : |x| ≥ 1}, RN

+ = {x = (x1, x2, · · · , xN ) ∈ RN : xN > 0}, Γ0 = {x ∈ Ω : xN = 0}, 
Γ1 = {x ∈ Ω : xN > 0, |x| = 1}, p, q > 1, f, g ∈ L1(Γ1), and a(t), b(t) are nonnegative locally integrable 
functions to be specified later. Here, by νi (i = 0, 1) we will denote the outward unit normal vector on Γi, 
relative to Ω, and by � we mean the partial order in R2 given as

(w1, w2) � (z1, z2) ⇐⇒ wi ≥ zi, i = 1, 2.

Furthermore, for w, z ∈ R2 we write w � z to indicate that w � z and w 	= z. Theoretically we are interested 
in establishing whether global weak solutions to problem (1.1) do not exist. Some motivations for studying 
problems of type (1.1) are mentioned below.

In the case of the whole space, the large-time behavior of solutions to the wave equation

∂ttu− Δu = |u|p in (0,∞) ×RN (1.2)

has been investigated in several works, see e.g. [4–6,12,15,21,22,24,25,28] and the references therein. For 
example, in [4] the authors discuss the existence of unique global solution under suitable weighted Strichartz 
estimates and without spherical symmetry, and [25] adds information about the solution to the so-called 
Strauss conjecture for (1.2), with dimension N ≥ 4. The similar result as in [25] can be established by 
different method (see Zhou [28] for more details and information). In [15], the authors study an initial 
boundary value problem of semilinear wave equation in exterior domain in two space dimensions with 
critical power. Hence, they show that the solution will blow-up in a finite time. Thanks to these works, we 
know that for every N ≥ 2, (1.2) admits a Fujita-type critical exponent (Strauss exponent)

pS(N) = N + 1 +
√
N2 + 10N − 7

2(N − 1) .

More precisely, we note that

(i) if 1 < p ≤ pS(N), then for any compactly supported initial values with positive average, the solution 
to (1.2) blows-up in a finite time;

(ii) if p > pS(N), then the solution to (1.2) exists globally in time for suitable compactly supported initial 
values.

In [2], the authors investigate the system of wave equations
{

∂ttu− Δu = |v|p in (0,∞) ×RN ,

∂ttv − Δv = |u|q in (0,∞) ×RN ,
(1.3)

where p, q > 1. Namely, it was shown that, if
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N − 1
2 < max

{
p + 2 + q−1

pq − 1 ,
q + 2 + p−1

pq − 1

}
,

then (under certain conditions on the initial values) (1.3) has no global solution. Moreover, for (p, q) be-
longing to a subset of the p&q plane

p, q > 1, N − 1
2 > max

{
p + 2 + q−1

pq − 1 ,
q + 2 + p−1

pq − 1

}
,

(1.3) has a global solution, provided the initial values are sufficiently small. For other works related to 
(1.3), see e.g. [1,3,7,14] and the references therein. For example, in [7] the authors study the impact of a 
framework of test functions on obtaining sharp estimates of solutions to both nonlinear wave equations and 
systems of nonlinear wave equations. A class of variational inequalities of Kirchhoff-type is studied in [29], 
where the authors establish the existence of infinite radial solutions in RN , by the non-smooth critical point 
theory based on Szulkin functionals. Before continuing the discussion of our setting, we also mention the 
work [26], where the authors consider a wide class of evolutionary variational-hemivariational inequalities 
of hyperbolic types, with the functional framework given in an evolution triple of spaces. By exploiting 
the Rothe approximation method, the authors establish results on existence, uniqueness, and regularity of 
solution to inequalities involving both a convex potential and a locally Lipschitz superpotential. Now, the 
study of wave inequalities in the whole space was first considered in [13] in the following form:

∂ttu− Δu ≥ |u|p in (0,∞) ×RN . (1.4)

In [13], another critical exponent (namely, Kato exponent) was obtained in the following form

pK(N) = N + 1
N − 1 .

In [20], the authors generalize the result in [13] and point out the sharpness of pK(N). In fact, it was shown 
that for N ≥ 2, we distinguish the following two cases:

(i) if 1 < p ≤ pK(N) and
∫
RN

∂tu(0, x) dx > 0, (1.5)

then (1.4) admits no global weak solution;
(ii) if p > pK(N), then there are positive global solutions to (1.4) satisfying (1.5).

For other contributions related to hyperbolic inequalities in the whole space, see e.g. [9,17,19] and the 
references therein. In the recent work [9], the authors investigate the effect of suitable gradient terms on 
the large-time behavior of solutions to certain classes of hyperbolic inequalities. Some nonexistence results 
for hyperbolic inequalities on Riemannian manifolds can be found in [10,18]. In [18], the authors obtain 
necessary conditions for the existence of solutions, extending previous nonexistence results for the wave 
operator with power nonlinearity on RN . In [10], test functions are used to study higher order evolution 
inequalities, with respect to the time variable, hence the authors need also to estimate the second derivatives 
of the test functions.

In [16], among other problems, the author considers the hyperbolic inequality

∂ttu− Δu ≥ |u|p in (0,∞) ×K, (1.6)
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under the Dirichlet-type boundary condition

u(t, x) ≥ 0, on (0,∞) × ∂K, (1.7)

where K is the cone defined by

K = {(r, ω) : r > 0, ω ∈ Ω}

and Ω is a domain of SN−1 (N ≥ 3). It was shown that, if the condition

1 < p ≤ 1 + 2
s∗ + 1

holds, where

s∗ = N − 2
2 +

√(
N − 2

2

)2

+ λ1

and λ1 is the first eigenvalue of the Laplace Beltrami operator on Ω, then problem (1.6) under the boundary 
condition (1.7) has no nontrivial global weak solution. Notice that in the special case K = RN

+ , one has 
λ1 = N − 1 and 1 + 2

s∗+1 = 1 + 2
N .

Now, a natural question is to understand the wave equation or inequality on other unbounded domains 
of RN . The study of blow-up for wave equation on exterior domains was initialized in [27]. Namely, the 
author considers the inhomogeneous problem

∂ttu− Δu = |x|α|u|p in (0,∞) ×Dc, (1.8)

under the Neumann boundary condition

∂u

∂ν
(t, x) = f(x) on (0,∞) × ∂D, (1.9)

where D is a smooth bounded set of RN , N ≥ 3, Dc is the complement of D, α > −2 and f(x) ≥ 0. In 
this case, it was shown that the critical exponent is equal to N+α

N−2 . More precisely, it was shown that the 
following are the cases:

(i) if 1 < p < N+α
N−2 and f 	≡ 0, then (1.8)-(1.9) admits no global solution;

(ii) if p > N+α
N−2 , (1.8)-(1.9) has global solutions for some f > 0.

In [8], among other results, it was shown that p = N+α
N−2 belongs to the blow-up case. In [11], the authors 

consider the system of wave inequalities
{

∂ttu− Δu ≥ |x|a|v|p in (0,∞) ×Dc,

∂ttv − Δv ≥ |x|b|u|q in (0,∞) ×Dc,
(1.10)

where p, q > 1, (a, b) � (−2, −2) and N ≥ 2, under three types of boundary conditions:
the Dirichlet-type condition:

(u(t, x), v(t, x)) � (f(x), g(x)) on (0,∞) × ∂D; (1.11)

the Neumann-type condition:
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(
∂u

∂ν
(t, x), ∂v

∂ν
(t, x)

)
� (f(x), g(x)) on (0,∞) × ∂D; (1.12)

the mixed-type boundary condition:

(
u(t, x), ∂v

∂ν
(t, x)

)
� (f(x), g(x)) on (0,∞) × ∂D, (1.13)

where f, g ∈ L1(∂D) and 
(∫

∂D f dσ,
∫
∂D g dσ

)
� (0, 0). It was shown that all the above problems share the 

same critical behavior. Namely, we note that, if N = 2; or N ≥ 3 and

N < max

⎧⎨
⎩sgn

⎛
⎝∫
∂D

f dσ

⎞
⎠× 2p(q + 1) + pb + a

pq − 1 , sgn

⎛
⎝∫
∂D

g dσ

⎞
⎠× 2q(p + 1) + qa + b

pq − 1

⎫⎬
⎭ , (1.14)

then we get the following conclusions:

(i) problem (1.10)-(1.11) admits no global weak solution if f, g ≥ 0;
(ii) problem (1.10)-(1.12) admits no global weak solution;
(iii) problem (1.10)-(1.13) admits no global weak solution if p > 2 and f ≥ 0.

Moreover, if D is a ball, the sign condition for f and g can be erased in (i) and (iii). Notice that the sharpness 
of (1.14) was justified in [11] (see [11, Remarks 1.5-1.6)].

As far as we know, the study of the large-time behavior of evolution inequalities in an exterior domain of 
the half-space was not addressed in the literature. Motivated by this fact and the above mentioned works, 
problem (1.1) is investigated in this paper.

Before stating our obtained results, let us mention in which sense the solutions to (1.1) are considered. 
Just before, let

D = (0,∞) × Ω, Γ0 = (0,∞) × Γ0, Γ1 = (0,∞) × Γ1.

We introduce the functional space

Φ =
{
ϕ ∈ C2

c (D) : ϕ ≥ 0, ϕ|Γi = 0, ∂ϕ

∂νi
|Γi ≤ 0, i = 0, 1

}
,

where C2
c (D) is the space of C2 functions compactly supported in D. Notice that Γi ⊂ D for all i = 0, 1.

Definition 1.1. We say that (u, v) ∈ Lq
loc(D) × Lp

loc(D) is a global weak solution to (1.1), if

∫
D

|v|pϕdx dt−
∫
Γ1

a(t) ∂ϕ
∂ν1

f(x) dσ1 dt ≤
∫
D

u (∂ttϕ− Δϕ) dx dt (1.15)

and ∫
D

|u|qϕdx dt−
∫
Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt ≤
∫
D

v (∂ttϕ− Δϕ) dx dt (1.16)

for every ϕ ∈ Φ.
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For h ∈ L1(Γ1), we introduce the integral

Ih =
∫
Γ1

xNh(x) dσ1.

Then, our main result for problem (1.1) is the following existence result.

Theorem 1.2. Assume that a(t) ∼ tα and b(t) ∼ tβ near infinity, where α, β ∈ R. Let f, g ∈ L1(Γ1) be such 
that (If , Ig) � (0, 0). If the following condition is satisfied

N + 1 < max
{

sgn(If )
(
α + 2p(q + 1)

pq − 1

)
, sgn(Ig)

(
β + 2q(p + 1)

pq − 1

)}
, (1.17)

then (1.1) admits no global weak solution.

Remark 1.3. Notice that the condition (1.17) is equivalent to the following assumptions

If > 0 and N + 1 < α + 2p(q + 1)
pq − 1 ,

or

Ig > 0 and N + 1 < β + 2q(p + 1)
pq − 1 .

Remark 1.4. Observe that for suitable values K1, K2 > 0, we get that

(u, v)(t, x) =
(
K1(t + 1)

−2(p+1)
pq−1 ,K2(t + 1)

−2(q+1)
pq−1

)

is a global solution to (1.1) with f = g ≡ 0. This shows the necessity of the assumption (If , Ig) � (0, 0) in 
Theorem 1.2.

In the special case a = b ≡ 1 (so α = β = 0), we deduce from Theorem 1.2 the following nonexistence 
result.

Corollary 1.5. Let a = b ≡ 1 and f, g ∈ L1(Γ1) be such that (If , Ig) � (0, 0). If the following condition is 
satisfied

N + 1 <
2

pq − 1 max {sgn(If )p(q + 1), sgn(Ig)q(p + 1)} , (1.18)

then (1.1) admits no global weak solution.

Remark 1.6. At this time, we do not know whether the condition (1.17) is sharp or not. However, in the 
special case a = b ≡ 1, our condition (1.18) is sharp. Namely, assume that

N + 1 >
2

pq − 1 max {p(q + 1), q(p + 1)} . (1.19)

Furthermore, let

(u∗, v∗)(x) = εxN (|x|δ1 , |x|δ2),
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where δ2 = dδ1, with

p + 1 + p(q + 1)
pq − 1 < δ1 < max {N, (N − 1)p− 1} , (1.20)

1
p

+ p + 1
δ1p

< d < max
{
N

δ1
, q − q + 1

δ1

}
(1.21)

and

0 < ε ≤ min
{

(δ1(N − δ1))
1

p−1 , (δ2(N − δ2))
1

q−1
}
. (1.22)

Then, we can check that (u∗, v∗) is a stationary solution to (1.1) for suitable f, g ≥ 0. Notice that under the 
condition (1.19), the set of values δ1 satisfying (1.20) is non-empty. Moreover, under the condition (1.20), the 
set of values d satisfying (1.21) is non-empty. Notice also that from (1.20) and (1.21), we have 0 < δi < N , 
i = 1, 2. Thus, the set of values ε satisfying (1.22) is non-empty.

If p = q in Corollary 1.5, we have the following nonexistence result.

Theorem 1.7. Let a = b ≡ 1, p = q and f, g ∈ L1(Γ1) be such that (If , Ig) � (0, 0). If the following condition 
is satisfied

N + 1 = 2p
p− 1 , (1.23)

then (1.1) admits no global weak solution.

Clearly, Corollary 1.5 and Theorem 1.7 yield nonexistence results for the corresponding stationary prob-
lem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−Δu ≥ |v|p in Ω,

−Δv ≥ |u|q in Ω,

(u(x), v(x)) � (0, 0) on Γ0,

(u(x), v(x)) � (f(x), g(x)) on Γ1.

(1.24)

We state this result in the form of the following corollary.

Corollary 1.8. Let f, g ∈ L1(Γ1) be such that (If , Ig) � (0, 0). If one of the following conditions is satisfied:

(i) (1.18) holds;
(ii) p = q and (1.23) holds,

then (1.24) admits no weak solution.

Remark 1.9. Consider the case of a single inequality
⎧⎪⎨
⎪⎩

∂ttu− Δu ≥ |u|p in (0,∞) × Ω,

u(t, x) ≥ 0 on (0,∞) × Γ0,

u(t, x) ≥ f(x) on (0,∞) × Γ1.

(1.25)

By Corollary 1.5 and Theorem 1.7, we deduce that, if If > 0 and
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1 < p ≤ N + 1
N − 1 ,

then (1.25) admits no global weak solution. Moreover, by Remark 1.6, we deduce that N+1
N−1 is the critical 

exponent (in the sense of Fujita) for problem (1.25). The same result holds for the corresponding stationary 
problem

⎧⎪⎨
⎪⎩

−Δu ≥ |u|p in Ω,

u(x) ≥ 0 on Γ0,

u(x) ≥ f(x) on Γ1.

It is interesting to observe that N+1
N−1 is exactly the Kato critical exponent for (1.4).

Finally, we mention a related work of nonlocal nature, see the paper of Straughan [23] where the author 
discusses a computational procedure to get the neutral curves for instability associated with thermal convec-
tive phenomena. This study shows how an investigation of critical cases and nonexistence criteria of solutions 
can be successfully applied to control certain physical systems in hydrodynamics. Indeed Straughan’s work 
depicts an useful strategy to employ in the minimization process over all wave numbers.

The rest of the paper is organized as follows. In Section 2, we establish some estimates that will play 
a crucial role in the proof of our main results. Section 3 is devoted to the proof of Theorems 1.2 and 1.7. 
Finally, some open questions are raised in Section 4.

2. Preliminaries

Throughout this paper, the symbol C denotes always a generic positive constant, which is independent 
of the scaling parameter T and the solutions u, v. Its value could be changed from one line to another. First 
we derive two useful a priori estimates of integral type, then we introduce some appropriate test functions 
to obtain other auxiliary estimates.

2.1. A priori estimates

For m > 1 and ϕ ∈ Φ, let

Im(ϕ) =
∫
D

ϕ
−1

m−1 |∂ttϕ|
m

m−1 dx dt (2.1)

and

Jm(ϕ) =
∫
D

ϕ
−1

m−1 |Δϕ| m
m−1 dx dt. (2.2)

The following a priori estimates for problem (1.1) will play a crucial role in the proof of Theorems 1.2 and 
1.7.

Lemma 2.1. Let (u, v) ∈ Lq
loc(D) ×Lp

loc(D) be a global weak solution to (1.1). Assume that there exists ϕ ∈ Φ
such that ∫

a(t) ∂ϕ
∂ν1

f(x) dσ1 dt ≤ 0. (2.3)

Γ1
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Then, we have

−
∫
Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt ≤ C
(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) q
pq−1

(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) pq
pq−1

, (2.4)

provided that Im(ϕ) < ∞ and Jm(ϕ) < ∞, m ∈ {p, q}.

Proof. Let (u, v) ∈ Lq
loc(D) ×Lp

loc(D) be a global weak solution to (1.1). Let ϕ ∈ Φ be such that (2.3) holds. 
Using (1.15) and (2.3), we obtain

∫
D

|v|pϕdx dt ≤
∫
D

|u||∂ttϕ| dx dt +
∫
D

|u||Δϕ| dx dt. (2.5)

On the other hand, by means of Hölder’s inequality, we get

∫
D

|u||∂ttϕ| dx dt ≤

⎛
⎝∫

D

|u|qϕdx dt

⎞
⎠

1
q

Iq(ϕ)
q−1
q (2.6)

and

∫
D

|u||Δϕ| dx dt ≤

⎛
⎝∫

D

|u|qϕdx dt

⎞
⎠

1
q

Jq(ϕ)
q−1
q . (2.7)

In view of the inequalities (2.5), (2.6) and (2.7), we obtain that

∫
D

|v|pϕdx dt ≤

⎛
⎝∫

D

|u|qϕdx dt

⎞
⎠

1
q (

Iq(ϕ)
q−1
q + Jq(ϕ)

q−1
q

)
. (2.8)

Similarly, by (1.16) and using Hölder’s inequality, we deduce that

∫
D

|u|qϕdx dt−
∫
Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt ≤

⎛
⎝∫

D

|v|pϕdx dt

⎞
⎠

1
p (

Ip(ϕ)
p−1
p + Jp(ϕ)

p−1
p

)
. (2.9)

Combining (2.8) with (2.9), we get the following inequality

∫
D

|u|qϕdx dt−
∫
Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt

≤

⎛
⎝∫

D

|u|qϕdx dt

⎞
⎠

1
pq (

Iq(ϕ)
q−1
q + Jq(ϕ)

q−1
q

) 1
p
(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

)
.

(2.10)

On the other hand, by means of ε-Young inequality with 0 < ε < 1, we have
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⎛
⎝∫

D

|u|qϕdx dt

⎞
⎠

1
pq (

Iq(ϕ)
q−1
q + Jq(ϕ)

q−1
q

) 1
p
(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

)

≤ ε

∫
D

|u|qϕdx dt + C
(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) q
pq−1

(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) pq
pq−1

.

(2.11)

Thus, it follows from (2.10) and (2.11) that

(1 − ε)
∫
D

|u|qϕdx dt−
∫
Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt

≤ C
(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) q
pq−1

(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) pq
pq−1

.

Since 0 < ε < 1, we conclude that (2.4) holds true. �
Proceeding as in the proof of Lemma 2.1, we obtain the following a priori estimate.

Lemma 2.2. Let (u, v) ∈ Lq
loc(D) ×Lp

loc(D) be a global weak solution to (1.1). Assume that there exists ϕ ∈ Φ
such that ∫

Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt ≤ 0.

Then, we get

−
∫
Γ1

a(t) ∂ϕ
∂ν1

f(x) dσ1 dt ≤ C
(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) p
pq−1

(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) pq
pq−1

,

provided that Im(ϕ) < ∞ and Jm(ϕ) < ∞, m ∈ {p, q}.

2.2. Test functions and some estimates

We introduce the function

H(x) = xN

(
1 − |x|−N

)
, x = (x1, x2, · · · , xN ) ∈ Ω. (2.12)

Now, it can be easily seen that H ≥ 0 and it satisfies the following

{
−ΔH = 0 in Ω,

H = 0 on Γ0 ∪ Γ1.
(2.13)

We need also two cut-off functions. So, let ξ, η ∈ C∞(R) be such that

0 ≤ ξ ≤ 1, ξ(s) = 1 if |s| ≤ 1, ξ(s) = 0 if |s| ≥ 2. (2.14)

and

η ≥ 0, supp(η) ⊂⊂ (0, 1). (2.15)
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For T > 0 and sufficiently large �, we introduce the functions

ρ(t) = η

(
t

T θ

)�

, t > 0, (2.16)

μ(x) = H(x)ξ
(
|x|2
T 2

)�

, x ∈ Ω,

and

ϕ(t, x) = ρ(t)μ(x), (t, x) ∈ D. (2.17)

Here, θ > 0 is a constant to be chosen later.

Lemma 2.3. For sufficiently large T and �, the function ϕ defined by (2.17), belongs to Φ.

Proof. It is clear that ϕ ≥ 0 and for sufficiently large �, we have ϕ ∈ C2
c (D). Moreover, by (2.13), we have 

ϕ|Γi = 0 for all i = 0, 1. Hence, we need just to show that

∂ϕ

∂νi

∣∣∣∣
Γi

≤ 0, i = 0, 1. (2.18)

On the other hand, we have

∇μ(x) = ∇
(
H(x)ξ

(
|x|2
T 2

)�
)

= ξ

(
|x|2
T 2

)�

∇H(x) + H(x)∇
[
ξ

(
|x|2
T 2

)�
]

= ξ

(
|x|2
T 2

)� ((
1 − |x|−N

)
eN + NxN |x|−N−2x

)
+ H(x)∇

[
ξ

(
|x|2
T 2

)�
]
, (2.19)

where eN = (0, · · · , 0, 1) ∈ RN . Then, by (2.19), for x ∈ Γ0, we get

∇μ(x) = ξ

(
|x|2
T 2

)� (
1 − |x|−N

)
eN ,

which yields

∂μ

∂ν0
(x) = −ξ

(
|x|2
T 2

)� (
1 − |x|−N

)
≤ 0.

Thus, by (2.15) and (2.17), we obtain

∂ϕ

∂ν0
(t, x) = ρ(t) ∂μ

∂ν0
(x) ≤ 0, (t, x) ∈ Γ0.

Again, by (2.19), for x ∈ Γ1 we get

∇μ(x) = NxNξ

(
1
2

)�

x.

T
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On the other hand, by (2.14), for sufficiently large T , we deduce that

ξ

(
1
T 2

)
= 1.

Then, we note that for sufficiently large T , the following is the case

∇μ(x) = NxNx,

which yields

∂ϕ

∂ν1
(t, x) = −NxNρ(t) ≤ 0, (t, x) ∈ Γ1. (2.20)

Thus (2.18) is proved. �
Lemma 2.4. Let a(t) ∼ tα near infinity, α ∈ R and If ≥ 0. Then, for sufficiently large T , the following 
inequality holds

−
∫
Γ1

a(t) ∂ϕ
∂ν1

f(x) dσ1 dt ≥ CT θ(α+1)If . (2.21)

Proof. In view of (2.20), we obtain

−
∫
Γ1

a(t) ∂ϕ
∂ν1

f(x) dσ1 dt = N

∫
Γ1

a(t)ρ(t)xNf(x) dσ1 dt

= N

⎛
⎝ ∞∫

0

a(t)η
(

t

T θ

)�

dt

⎞
⎠ If . (2.22)

On the other hand, by (2.15), for sufficiently large T , we have (notice that a(t) ≥ 0)

∞∫
0

a(t)η
(

t

T θ

)�

dt =
T θ∫
0

a(t)η
(

t

T θ

)�

dt

≥
T θ∫

Tθ

2

a(t)η
(

t

T θ

)�

dt

≥ C

T θ∫
Tθ

2

tαη

(
t

T θ

)�

dt

= CT θ(α+1)
1∫

1
2

sαη(s)� ds,

and hence we conclude that
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∞∫
0

a(t)η
(

t

T θ

)�

dt ≥ CT θ(α+1). (2.23)

Combining (2.22) with (2.23), we obtain the inequality (2.21). �
Following the proof of Lemma 2.4, we deduce the following estimate.

Lemma 2.5. Let b(t) ∼ tβ near infinity, β ∈ R and Ig ≥ 0. Then, for sufficiently large T , the following 
inequality holds

−
∫
Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt ≥ CT θ(β+1)Ig.

We give next result with complete proof.

Lemma 2.6. Let m > 1. For sufficiently large T and �, the following inequality holds

Im(ϕ) ≤ CT
N+1−θ

(
m+1
m−1

)
. (2.24)

Proof. By (2.1) and (2.17), we have

Im(ϕ) =

⎛
⎝∫

Ω

μ(x) dx

⎞
⎠ ∞∫

0

ρ(t)
−1

m−1 |ρ′′(t)| m
m−1 dt. (2.25)

On the other hand, we have

∫
Ω

μ(x) dx =
∫
Ω

H(x)ξ
(
|x|2
T 2

)�

dx

=
∫
Ω

xN

(
1 − |x|−N

)
ξ

(
|x|2
T 2

)�

dx.

Using (2.14), for sufficiently large T , we obtain the following chain of inequalities

∫
Ω

μ(x) dx =
∫

1<|x|<
√

2T,xN>0

xN

(
1 − |x|−N

)
ξ

(
|x|2
T 2

)�

dx

≤
∫

1<|x|<
√

2T,xN>0

xN dx

≤
∫

1<|x|<
√

2T,xN>0

|x| dx

≤
∫

1<|x|<
√

2T

|x| dx

≤ CTN+1. (2.26)
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Moreover, by (2.15), for sufficiently large �, we have

∞∫
0

ρ(t)
−1

m−1 |ρ′′(t)| m
m−1 dt =

T θ∫
0

η

(
t

T θ

) −�
m−1

∣∣∣∣∣ d
2

dt2
η

(
t

T θ

)�
∣∣∣∣∣

m
m−1

≤ CT
−2θm
m−1

T θ∫
0

η

(
t

T θ

)�− 2m
m−1

dt

= CT
−2θm
m−1 +θ

1∫
0

η(s)�−
km
m−1 ds,

that is,

∞∫
0

ρ(t)
−1

m−1 |ρ′′(t)| m
m−1 dt ≤ CT

−θ
(

m+1
m−1

)
. (2.27)

Hence, (2.24) follows from (2.25), (2.26) and (2.27). �
Now, we provide an estimate for Jm(ϕ).

Lemma 2.7. Let m > 1. For sufficiently large T and �, the following inequality holds

Jm(ϕ) ≤ CTN+1− 2m
m−1+θ. (2.28)

Proof. By (2.2) and (2.17), we have

Jm(ϕ) =

⎛
⎝ ∞∫

0

ρ(t) dt

⎞
⎠∫

Ω

μ(x)
−1

m−1 |Δμ(x)| m
m−1 dx. (2.29)

On the other hand, by (2.15), we have

∞∫
0

ρ(t) dt =
∞∫
0

η

(
t

T θ

)�

dt

=
T θ∫
0

η

(
t

T θ

)�

dt

= T θ

1∫
0

η(s)� ds,

that gives us

∞∫
0

ρ(t) dt = CT θ. (2.30)

Moreover, using (2.13), for x ∈ Ω we obtain
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Δμ(x) = Δ
(
H(x)ξ

(
|x|2
T 2

)�
)

= ξ

(
|x|2
T 2

)�

ΔH(x) + H(x)Δ
[
ξ

(
|x|2
T 2

)�
]

+ 2∇
[
ξ

(
|x|2
T 2

)�
]
· ∇H(x)

= H(x)Δ
[
ξ

(
|x|2
T 2

)�
]

+ 2∇
[
ξ

(
|x|2
T 2

)�
]
· ∇H(x), (2.31)

where “·” denotes the inner product in RN . On the other hand, by (2.14), for x ∈ Ω with T < |x| <
√

2T , 
we have ∣∣∣∣∣H(x)Δ

[
ξ

(
|x|2
T 2

)�
]∣∣∣∣∣ ≤ CT−2H(x)ξ

(
|x|2
T 2

)�−2

≤ CT−2ξ

(
|x|2
T 2

)�−2

xN (2.32)

and

∇
[
ξ

(
|x|2
T 2

)�
]
· ∇H(x) = 2�T−2ξ

(
|x|2
T 2

)�−1

ξ′
(
|x|2
T 2

)
x ·
((

1 − |x|−N
)
eN + NxN |x|−N−2x

)

= 2�T−2ξ

(
|x|2
T 2

)�−1

ξ′
(
|x|2
T 2

)((
1 − |x|−N

)
xN + NxN |x|−N

)

= 2�T−2ξ

(
|x|2
T 2

)�−1

ξ′
(
|x|2
T 2

)
xN

(
1 + (N − 1)|x|−N

)
,

which yield ∣∣∣∣∣∇
[
ξ

(
|x|2
T 2

)�
]
· ∇H(x)

∣∣∣∣∣ ≤ CT−2ξ

(
|x|2
T 2

)�−2

xN . (2.33)

Hence, by (2.14), (2.31), (2.32) and (2.33), for sufficiently large T and �, we obtain
∫
Ω

μ(x)
−1

m−1 |Δμ(x)| m
m−1 dx

≤ CT
−2m
m−1

∫
x∈Ω,T<|x|<

√
2T

xN

(
1 − |x|−N

) −1
m−1 ξ

(
|x|2
T 2

)�− 2m
m−1

dx

≤ CT
−2m
m−1

∫
x∈Ω,T<|x|<

√
2T

xNξ

(
|x|2
T 2

)�− 2m
m−1

dx

= CTN+1− 2m
m−1

∫
1<|y|<

√
2,yN>0

yNξ(|y|2)�− 2m
m−1 dy,

that is, ∫
Ω

μ(x)
−1

m−1 |Δμ(x)| m
m−1 dx ≤ CTN+1− 2m

m−1 . (2.34)

Hence, (2.28) follows from (2.29), (2.30) and (2.34). �
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The following lemma in some sense is a byproduct of Lemmas 2.6 and 2.7.

Lemma 2.8. Let m > 1 and θ = 1. For sufficiently large T and �, the following inequality holds

Im(ϕ)
m−1
m + Jm(ϕ)

m−1
m ≤ CT

(
N+2− 2m

m−1

)(
m−1
m

)
. (2.35)

Proof. By (2.24) and (2.28), for sufficiently large T and �, there holds

Im(ϕ)
m−1
m + Jm(ϕ)

m−1
m ≤ C

(
Tλ1 + Tλ2

)
,

where

λ1 =
(
N + 1 + θ

(
−m− 1
m− 1

))(
m− 1
m

)

and

λ2 =
(
N + 1 − 2m

m− 1 + θ

)(
m− 1
m

)
.

Observe that

λ2 − λ1 = 2(θ − 1).

So, taking θ = 1, we obtain

λ1 = λ2 =
(
N + 2 − 2m

m− 1

)(
m− 1
m

)
,

which yields (2.35). �
Appealing to Lemma 2.8 we can obtain the following result.

Lemma 2.9. Let θ = 1. For sufficiently large T and �, the following inequality holds

(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) q
pq−1

(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) pq
pq−1 ≤ CT

1
pq−1 ((N+2)(pq−1)−2q(p+1)). (2.36)

Proof. Using Lemma 2.8 with m = q, we obtain

(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) q
pq−1 ≤ CT

(
N+2− 2q

q−1

)(
q−1
pq−1

)
. (2.37)

Similarly, using Lemma 2.8 with m = p, we obtain

(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) pq
pq−1 ≤ CT

(
N+2− 2p

p−1

)(
(p−1)q
pq−1

)
. (2.38)

Hence, (2.36) follows from (2.37) and (2.38). �
Similarly, using again Lemma 2.8, we get the following estimate.
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Lemma 2.10. Let θ = 1. For sufficiently large T and �, the following inequality holds

(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) p
pq−1

(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) pq
pq−1 ≤ CT

1
pq−1 ((N+2)(pq−1)−2p(q+1)).

For the study of the critical case, we need to introduce another cut-off function. So, let Λ : R → [0, 1] be 
a smooth function satisfying the conditions:

Λ(s) = 1 if s ≤ 0, Λ(s) = 0 if s ≥ 1. (2.39)

For T > 0 and sufficiently large �, we consider the function

μ∗(x) = H(x)Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�

, x ∈ Ω,

where H is the function defined by (2.12). Hence, we introduce the new test function

ϕ∗(t, x) = ρ(t)μ∗(x), (t, x) ∈ D, (2.40)

where ρ is the function defined by (2.16).

Lemma 2.11. For sufficiently large T and �, the function ϕ∗ defined by (2.40) belongs to Φ.

Proof. We need just to show that

∂ϕ∗
∂νi

∣∣∣∣
Γi

≤ 0, i = 0, 1. (2.41)

We have the following calculations

∇μ∗(x) = ∇

⎛
⎜⎝H(x)Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎞
⎟⎠

= Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�

∇H(x) + H(x)∇

⎛
⎜⎝Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎞
⎟⎠

= Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

� ((
1 − |x|−N

)
eN + NxN |x|−N−2x

)

+ H(x)∇

⎛
⎜⎝Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎞
⎟⎠ . (2.42)

Then, by (2.42), for x ∈ Γ0 we get

∇μ∗(x) = Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

� (
1 − |x|−N

)
eN ,
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which yields

∂μ∗
∂ν0

(x) = −Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

� (
1 − |x|−N

)
≤ 0.

Thus, by (2.15) and (2.40), we deduce that

∂ϕ∗
∂ν0

(t, x) = ρ(t)∂μ∗
∂ν0

(x) ≤ 0, (t, x) ∈ Γ0.

Again, by (2.42), for x ∈ Γ1 we get

∇μ∗(x) = NxNΛ

⎛
⎝ ln

(
1√
T

)
ln(

√
T )

⎞
⎠

�

x.

On the other hand, by (2.39), for sufficiently large T , we conclude that

Λ

⎛
⎝ ln

(
1√
T

)
ln(

√
T )

⎞
⎠ = 1.

Then, for sufficiently large T , we deduce that

∇μ∗(x) = NxNx,

which yields

∂ϕ∗
∂ν1

(t, x) = −NxNρ(t) ≤ 0, (t, x) ∈ Γ1. (2.43)

Thus the conditions in (2.41) are proved. �
Using (2.43) and following the proof of Lemma 2.4, we obtain the following estimates.

Lemma 2.12. Assume that If ≥ 0. Then, for sufficiently large T , the following inequality holds

−
∫
Γ1

∂ϕ∗
∂ν1

f(x) dσ1 dt ≥ CT θIf .

Lemma 2.13. Assume that Ig ≥ 0. Then, for sufficiently large T , the following inequality holds

−
∫
Γ1

∂ϕ∗
∂ν1

g(x) dσ1 dt ≥ CT θIg.

For the next result, we provide complete proof.

Lemma 2.14. Let m > 1. For sufficiently large T and �, the following inequality holds

Im(ϕ∗) ≤ CT
N+1−θ

(
m+1
m−1

)
. (2.44)
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Proof. By (2.1) and (2.40), we have

Im(ϕ∗) =

⎛
⎝∫

Ω

μ∗(x) dx

⎞
⎠ ∞∫

0

ρ(t)
−1

m−1 |ρ′′(t)| m
m−1 dt. (2.45)

On the other hand, we have

∫
Ω

μ∗(x) dx =
∫
Ω

H(x)Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�

dx

=
∫
Ω

xN

(
1 − |x|−N

)
Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�

dx.

Using (2.39) and the fact that 0 ≤ Λ ≤ 1, for sufficiently large T , we obtain the following chain of inequalities

∫
Ω

μ∗(x) dx =
∫

1<|x|<T,xN>0

xN

(
1 − |x|−N

)
Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�

dx

≤
∫

1<|x|<T,xN>0

xNΛ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�

dx

≤
∫

1<|x|<T,xN>0

xN dx

≤ CTN+1. (2.46)

Hence, inequality (2.44) follows from (2.45), (2.46) and (2.27). �
Lemma 2.15. Let m = N+1

N−1 . For sufficiently large T and �, the following holds

Jm(ϕ∗) ≤ CT θ(lnT )
−2

N−1 . (2.47)

Proof. By (2.2) and (2.40), we have

Jm(ϕ) =

⎛
⎝ ∞∫

0

ρ(t) dt

⎞
⎠∫

Ω

μ∗(x)
−1

m−1 |Δμ∗(x)| m
m−1 dx. (2.48)

Moreover, using (2.13), for x ∈ Ω, we obtain

Δμ∗(x) = Δ

⎛
⎜⎝H(x)Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎞
⎟⎠

= Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�

ΔH(x) + H(x)Δ

⎡
⎢⎣Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎤
⎥⎦
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+2∇

⎡
⎢⎣Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎤
⎥⎦ · ∇H(x)

= H(x)Δ

⎡
⎢⎣Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎤
⎥⎦+ 2∇

⎡
⎢⎣Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎤
⎥⎦ · ∇H(x). (2.49)

On the other hand, by (2.39), for x ∈ Ω with 
√
T < |x| < T , we have

∣∣∣∣∣∣∣H(x)Δ

⎡
⎢⎣Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎤
⎥⎦
∣∣∣∣∣∣∣ ≤ C(lnT )−1|x|−2Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�−2

xN (2.50)

and

∇

⎡
⎢⎣Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎤
⎥⎦ · ∇H(x)

= �

|x|2 ln
√
T

Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�−1

Λ′

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠x ·

((
1 − |x|−N

)
eN + NxN |x|−N−2x

)

= �

ln
√
T

Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�−1

Λ′

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠ |x|−2 ((1 − |x|−N

)
xN + NxN |x|−N

)

= �

ln
√
T

Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�−1

Λ′

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠ |x|−2xN

(
1 + (N − 1)|x|−N

)
.

It follows that ∣∣∣∣∣∣∣∇
⎡
⎢⎣Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�
⎤
⎥⎦ · ∇H(x)

∣∣∣∣∣∣∣ ≤ C(lnT )−1|x|−2Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�−2

xN . (2.51)

Hence, involving (2.49), (2.50) and (2.51) we deduce that∫
Ω

μ∗(x)
−1

m−1 |Δμ∗(x)| m
m−1 dx

≤ C(lnT )
−m
m−1

∫
x∈Ω,

√
T<|x|<T

xN |x|
−2m
m−1

(
1 − |x|−N

) −1
m−1 Λ

⎛
⎝ ln

(
|x|√
T

)
ln(

√
T )

⎞
⎠

�− 2m
m−1

dx

≤ C(lnT )
−m
m−1

∫
x∈Ω,

√
T<|x|<T

|x|1− 2m
m−1 dx

≤ C(lnT )
−m
m−1

T∫
√

rN− 2m
m−1 dr
r= T



M. Jleli et al. / J. Math. Anal. Appl. 526 (2023) 127325 21
= C(lnT )
−m
m−1

T∫
r=

√
T

r−1 dr

≤ C(lnT )
−1

m−1 ,

which gives us the inequality
∫
Ω

μ∗(x)
−1

m−1 |Δμ∗(x)| m
m−1 dx ≤ C(lnT )

−2
N−1 . (2.52)

Hence, we can conclude that the estimate (2.47) follows from (2.48), (2.52) and (2.30). �
3. Proof of the main results

In this section, we prove Theorems 1.2 and 1.7. We recall that both these results concern the nonexistence 
of global weak solutions to (1.1).

Proof of Theorem 1.2. We argue by contradiction, supposing that (u, v) ∈ Lq
loc(D) × Lp

loc(D) is a global 
weak solution to (1.1). We first consider the case

If > 0 and N + 1 < α + 2p(q + 1)
pq − 1 . (3.1)

For sufficiently large T and �, let ϕ be the test function defined by (2.17). Since Ig ≥ 0, by Lemma 2.5, we 
get

∫
Γ1

b(t) ∂ϕ
∂ν1

g(x) dσ1 dt ≤ 0.

Hence, by Lemmas 2.2, 2.3 and 2.4, we obtain

T θ(α+1)If ≤ C
(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) p
pq−1

(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) pq
pq−1

.

Taking θ = 1 in the above inequality, we deduce from Lemma 2.10 that

If ≤ CTλ, (3.2)

where

λ = 1
pq − 1 ((N + 2)(pq − 1) − 2p(q + 1)) − α− 1.

Observe that by (3.1), we have If > 0 and λ < 0. Hence, passing to the limit as T → ∞ in (3.2), we obtain 
a contradiction with the assumption that If > 0.

Now, we focus on the case

Ig > 0 and N + 1 < β + 2q(p + 1)
pq − 1 . (3.3)

As in the previous case, for sufficiently large T and �, we use the same test function ϕ defined by (2.17). 
Since If ≥ 0, by Lemma 2.4, we get
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∫
Γ1

a(t) ∂ϕ
∂ν1

f(x) dσ1 dt ≤ 0.

Hence, by Lemmas 2.1, 2.3 and 2.5, we obtain

T θ(β+1)Ig ≤ C
(
Iq(ϕ)

q−1
q + Jq(ϕ)

q−1
q

) q
pq−1

(
Ip(ϕ)

p−1
p + Jp(ϕ)

p−1
p

) pq
pq−1

.

Taking θ = 1 in the above inequality, we deduce from Lemma 2.9 that

Ig ≤ CTκ, (3.4)

where

κ = 1
pq − 1 ((N + 2)(pq − 1) − 2q(p + 1)) − β − 1.

On the other hand, in view of (3.3), we have Ig and κ < 0. Hence, passing to the limit as T → ∞ in (3.4), 
we obtain a contradiction with the assumption that Ig > 0. This completes the proof of Theorem 1.2. �

Now, we present the complete proof of Theorem 1.7.

Proof of Theorem 1.7. We use also the contradiction argument. Namely, suppose that (u, v) ∈ Lp
loc(D) ×

Lp
loc(D) is a global weak solution to (1.1). Without restriction of the generality, we may assume that If > 0. 

At this time, for sufficiently large T and �, we use the test function ϕ∗ defined by (2.40). Since Ig ≥ 0, by 
Lemma 2.13, we get

∫
Γ1

∂ϕ∗
∂ν1

g(x) dσ1 dt ≤ 0.

Hence, by Lemma 2.2 (with a = b ≡ 1 and p = q), Lemma 2.11 and Lemma 2.12, we obtain

T θIf ≤ C
(
Ip(ϕ∗)

p−1
p + Jp(ϕ∗)

p−1
p

) p
p−1

,

which yields

T θIf ≤ C (Ip(ϕ∗) + Jp(ϕ∗)) . (3.5)

On the other hand, by Lemma 2.14 (with m = p) and Lemma 2.15 (with m = p; notice that by (1.23), we 
have p = N+1

N−1 ), we obtain

Ip(ϕ∗) + Jp(ϕ∗) ≤ C

(
T

N+1−θ
(

p+1
p−1

)
+ T θ(lnT )

−2
N−1

)
. (3.6)

Then, in view of (3.5) and (3.6), we get

If ≤ C
(
TN+1− 2θp

p−1 + (lnT )
−2

N−1

)
. (3.7)

Thus, taking θ > (N+1)(p−1)
2p = 1 (i.e., N + 1 − 2θp

p−1 < 0) and passing to the limit as T → ∞ in (3.7), we 
obtain a contradiction with the assumption that If > 0. This completes the proof of Theorem 1.7. �
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4. Further remarks

In Theorem 1.2, the critical case

N ≥ 2, N + 1 = max
{

sgn(If )
(
α + 2p(q + 1)

pq − 1

)
, sgn(Ig)

(
β + 2q(p + 1)

pq − 1

)}
(4.1)

for system (1.1) is not completely investigated here. Namely, by Corollary 1.5 and Theorem 1.7, we know 
only that, if p = q and α = β = 0, then (4.1) belongs to blow-up case. It should be interesting to decide 
whether in general, the critical curve (4.1) in p&q plan belongs to the blow-up situation.

In Theorem 1.2, the sharpness of the condition (1.17) was established only in the special case a = b ≡ 1
(see Remark 1.6). It should be interesting to study the existence of global solutions to system (1.1) in the 
general case when

N + 1 > max
{

sgn(If )
(
α + 2p(q + 1)

pq − 1

)
, sgn(Ig)

(
β + 2q(p + 1)

pq − 1

)}
.
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