We consider some notions of iterated conditionals by checking the validity of some desirable basic logical and probabilistic properties, which are valid for simple conditionals. We consider de Finetti’s notion of conditional as a three-valued object and as a conditional random quantity in the betting framework. We recall the notions of conjunction and disjunction among conditionals in selected trivalent logics. Then, we analyze the two notions of iterated conditional introduced by Calabrese and de Finetti, respectively. We show that the compound probability theorem and other basic properties are not preserved by these objects, by also computing some probability propagation rules. Then, for each trivalent logic we introduce an iterated conditional as a suitable random quantity which satisfies the compound prevision theorem and some of the desirable properties. Finally, we remark that all the basic properties are satisfied by the iterated conditional mainly developed in recent papers by Gilio and Sanfilippo in the setting of conditonal random quantities.
Castronovo, L., Sanfilippo, G. (2022). Iterated Conditionals, Trivalent Logics, and Conditional Random Quantities. In F. Dupin de Saint-Cyr, M. Öztürk-Escoffier, N. Potyka (a cura di), Scalable Uncertainty Management, 15th International Conference, SUM 2022, Paris, France, October 17–19, 2022, Proceedings (pp. 47-63) [10.1007/978-3-031-18843-5_4].
Iterated Conditionals, Trivalent Logics, and Conditional Random Quantities
Castronovo, Lydia
;Sanfilippo, Giuseppe
2022-10-10
Abstract
We consider some notions of iterated conditionals by checking the validity of some desirable basic logical and probabilistic properties, which are valid for simple conditionals. We consider de Finetti’s notion of conditional as a three-valued object and as a conditional random quantity in the betting framework. We recall the notions of conjunction and disjunction among conditionals in selected trivalent logics. Then, we analyze the two notions of iterated conditional introduced by Calabrese and de Finetti, respectively. We show that the compound probability theorem and other basic properties are not preserved by these objects, by also computing some probability propagation rules. Then, for each trivalent logic we introduce an iterated conditional as a suitable random quantity which satisfies the compound prevision theorem and some of the desirable properties. Finally, we remark that all the basic properties are satisfied by the iterated conditional mainly developed in recent papers by Gilio and Sanfilippo in the setting of conditonal random quantities.File | Dimensione | Formato | |
---|---|---|---|
sum2022.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
398.68 kB
Formato
Adobe PDF
|
398.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Sum_2022_xIRIS.pdf
Open Access dal 12/10/2023
Tipologia:
Post-print
Dimensione
325.15 kB
Formato
Adobe PDF
|
325.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.