Study region: The study region is represented by seven irrigation districts distributed under different climate and topography conditions in Italy. Study focus: This study explores the reliability and consistency of the global ERA5 single levels and ERA5-Land reanalysis datasets in predicting the main agrometeorological estimates commonly used for crop water requirements calculation. In particular, the reanalysis data was compared, variable-by-variable (e.g., solar radiation, R-s; air temperature, T-air; relative humidity, RH; wind speed, u(10); reference evapotranspiration, ET0), with in situ agrometeorological obser-vations obtained from 66 automatic weather stations (2008-2020). In addition, the presence of a climate-dependency on their accuracy was assessed at the different irrigation districts. New hydrological insights for the region: A general good agreement was obtained between observed and reanalysis agrometeorological variables at both daily and seasonal scales. The best perfor-mance was obtained for T-air, followed by RH, R-s, and u(10) for both reanalysis datasets, especially under temperate climate conditions. These performances were translated into slightly higher accuracy of ET0 estimates by ERA5-Land product, confirming the potential of using reanalysis datasets as an alternative data source for retrieving the ET0 and overcoming the unavailability of observed agrometeorological data.
Daniela Vanella, Giuseppe Longo-Minnolo, Oscar Rosario Belfiore, Juan Miguel Ramírez-Cuesta, Salvatore Pappalardo, Simona Consoli, et al. (2022). Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy. JOURNAL OF HYDROLOGY. REGIONAL STUDIES, 42 [10.1016/j.ejrh.2022.101182].
Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy
Salvatore Pappalardo;Simona Consoli;Antonio Coppola;Attilio Toscano;Giuseppe Provenzano;Matteo Ippolito;
2022-07-22
Abstract
Study region: The study region is represented by seven irrigation districts distributed under different climate and topography conditions in Italy. Study focus: This study explores the reliability and consistency of the global ERA5 single levels and ERA5-Land reanalysis datasets in predicting the main agrometeorological estimates commonly used for crop water requirements calculation. In particular, the reanalysis data was compared, variable-by-variable (e.g., solar radiation, R-s; air temperature, T-air; relative humidity, RH; wind speed, u(10); reference evapotranspiration, ET0), with in situ agrometeorological obser-vations obtained from 66 automatic weather stations (2008-2020). In addition, the presence of a climate-dependency on their accuracy was assessed at the different irrigation districts. New hydrological insights for the region: A general good agreement was obtained between observed and reanalysis agrometeorological variables at both daily and seasonal scales. The best perfor-mance was obtained for T-air, followed by RH, R-s, and u(10) for both reanalysis datasets, especially under temperate climate conditions. These performances were translated into slightly higher accuracy of ET0 estimates by ERA5-Land product, confirming the potential of using reanalysis datasets as an alternative data source for retrieving the ET0 and overcoming the unavailability of observed agrometeorological data.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2214581822001951-main.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
8.82 MB
Formato
Adobe PDF
|
8.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.