This letter investigates the stability properties of the soft inverted pendulum with affine curvature - a tem- plate model for nonlinear control of underactuated soft robots. We look at how changes in physical parameters affect stability and equilibrium. We give conditions under which zero dynamics corresponding to a collocated choice of the output is (locally or globally) stable or unstable. We leverage these results to design a switching controller that stabilizes a class of nonlinear equilibria of the pendulum, which can drive the system from one equilibrium to another.
Trumic M., Santina C.D., Jovanovic K., & Fagiolini A. (2022). On the stability of the soft pendulum with affine curvature: open-loop, collocated closed-loop, and switching control. IEEE CONTROL SYSTEMS LETTERS, 7, 385-390 [10.1109/LCSYS.2022.3187612].
On the stability of the soft pendulum with affine curvature: open-loop, collocated closed-loop, and switching control
Trumic M.;Fagiolini A.
2022
Abstract
This letter investigates the stability properties of the soft inverted pendulum with affine curvature - a tem- plate model for nonlinear control of underactuated soft robots. We look at how changes in physical parameters affect stability and equilibrium. We give conditions under which zero dynamics corresponding to a collocated choice of the output is (locally or globally) stable or unstable. We leverage these results to design a switching controller that stabilizes a class of nonlinear equilibria of the pendulum, which can drive the system from one equilibrium to another.File | Dimensione | Formato | |
---|---|---|---|
C05_LCSS22_Continuum_Soft_Stability.pdf
non disponibili
Tipologia:
Versione Editoriale
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.