In this paper we deal with the Banach space C-b(m)[0,+infinity] of all m-times continuously derivable, bounded with all derivatives up to the order m, real functions defined on [0, +infinity). We prove, for any epsilon > 0, the existence of a new proper k-ball-contractive retraction with k < 1+epsilon of the closed unit ball of the space onto its boundary, so that the Wosko constant W-gamma(C-b(m)[0,+infinity]) is equal to 1.
Diana Caponetti, Alessandro Trombetta, Giulio Trombetta (2021). Proper $k$-ball-contractive mappings in $C_b^m[0, + infty)$. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 58(2), 609-639 [10.12775/TMNA.2021.017].
Proper $k$-ball-contractive mappings in $C_b^m[0, + infty)$
Diana Caponetti
;
2021-12-01
Abstract
In this paper we deal with the Banach space C-b(m)[0,+infinity] of all m-times continuously derivable, bounded with all derivatives up to the order m, real functions defined on [0, +infinity). We prove, for any epsilon > 0, the existence of a new proper k-ball-contractive retraction with k < 1+epsilon of the closed unit ball of the space onto its boundary, so that the Wosko constant W-gamma(C-b(m)[0,+infinity]) is equal to 1.File | Dimensione | Formato | |
---|---|---|---|
copia cartaceo.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
300.36 kB
Formato
Adobe PDF
|
300.36 kB | Adobe PDF | Visualizza/Apri |
Caponetti.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.