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PROPER K-BALL-CONTRACTIVE MAPPINGS IN Cmb [0,∞)

Diana Caponetti — Alessandro Trombetta — Giulio Trombetta

Abstract. In this paper we deal with the Banach space Cmb [0,∞) of all

m-times continuously derivable, bounded with all derivatives up to the
order m, real functions defined on [0,+∞). We prove, for any ε > 0, the

existence of a new proper k-ball-contractive retraction with k < 1+ε of the

closed unit ball of the space onto its boundary, so that the Wośko constant
Wγ(Cmb [0,∞)) is equal to 1.

1. Introduction

Given a Banach space X, we denote by B(X) = {x ∈ X : ‖x‖ ≤ 1} the
closed unit ball and by S(X) = {x ∈ X : ‖x‖ = 1} the unit sphere in X. It is
well known that in any infinite-dimensional Banach space X there is a retraction
from B(X) onto S(X), that is, a continuous mapping R : B(X) → S(X) such
that Rx = x for x ∈ S(X). Moreover such a retraction can be chosen to be
Lipschitzian [5] with ‖Rx − Ry‖ ≤ k0‖x − y‖, for some universal constant k0.
The optimal retraction problem, considered for the first time in [20], consists
in the evaluation, in a given Banach space X, of the constant k0(X) which is
the infimum of all k for which there exists a retraction of B(X) onto S(X)
being Lipschitz with constant k. The problem has found a large interest in the
literature. It is known k0(X) ≥ 3 for every space X. For evaluation of the
constant in some specific Banach spaces we refer, among others, to results in
[2, 6, 15, 23, 25, 26] and to the surveys on the subject [14, 21, 22].
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In this paper we are interested in the analogous problem which arises when
we consider another metric property, namely measure of noncompactness, of the
above retractions. Throughout we will consider γ to be the Hausdorff measure
of noncompactness, i.e. for A ⊆ X bounded, γ(A) is the infimum of all ε > 0
such that A has a finite ε-net in X. We recall that the set function γ satisfies
the following properties, for A,B ⊆ X bounded, K ⊆ X precompact and λ ∈ R:

(i) γ(A) = 0 if and only if A is precompact;
(ii) γ(coA) = γ(A) (convex closure invariance);

(iii) γ(A ∪B) = max{γ(A), γ(B)} (maximum property);
(iv) γ(A+K) = γ(A) (compact perturbations);
(v) γ(λA) = |λ|γ(A) (homogeneity);

(vi) γ([0, 1] ·A) = γ(A) (absorption invariance).

A continuous mapping T : M ⊂ X → X is said to be k-ball-contractive if
γ(TA) ≤ kγ(A) for bounded A ⊆M , and the γ-norm, γ(T ), of T is defined by

γ(T ) = inf{k ≥ 0 : γ(TA) ≤ kγ(A) for bounded A ⊆M}.

We will also consider ω(T ) = sup{k ≥ 0 : γ(TA) ≥ kγ(A) for bounded A ⊆M},
which is called the lower γ-norm of T , the main reason is that ω(T ) > 0 implies
T to be a proper mapping. Now the optimal retraction problem for k-ball-
contractive mappings concerns the evaluation (see [4]) of the Wośko constant

Wγ(X) = inf{k ≥ 1 : ∃ a retraction R : B(X)→ S(X) with γ(R) ≤ k}.

The constant Wγ(X) has been estimated in many Banach spaces X [3, 7, 10, 12,
13, 16, 27, 28]. In some spaces it has been proved Wγ(X) = 1, and in some cases
the value 1 has been achieved [10, 12] with the construction of a 1-ball-contractive
retraction. Actually it is an open problem whether or not Wγ(X) = 1 in any
Banach space. The estimate of Wγ(X), by means of retractions, eventually
proper, leads to useful results for applications as, for instance, applications to
theorems of Birkhoff-Kellogg type (see [3, 8, 9, 11, 17, 24]).

In [13] we have proved Wγ(Cm[0, 1]) = 1, being Cm[0, 1] the Banach space of
allm-times continuously derivable real functions defined on [0, 1], by constructing
for any ε > 0 a proper k-ball-contractive retraction, with k < 1 + ε. Here we
succeed to prove the same result in the Banach space Cmb [0,+∞). In [13] we
have followed a general scheme to construct a 1-ball-contractive mapping from
the closed unit ball of Cm[0, 1] into itself and obtaining a retraction as the
normalization of a compact perturbation of such a mapping. In the present
framework we need a new original approach, which besides requires quite more
technical proofs for intermediate results. We construct for any p ∈ N a mapping
Qp defined on B(Cmb [0,+∞)) taking values in Cmb [0,+∞) which is (1 + εp)-
ball-contractive for some εp > 0 with limp→∞ εp = 0. After this we are in a
position, for each p ∈ N, to construct retractions, which will depend on some



3

u > 0, normalizing compact perturbations of Qp. In such a way for any ε > 0
we can find a proper k-ball-contractive retraction, corresponding to some p ∈ N
and u > 0, with k < 1 + ε, which, in turn, gives Wγ(Cmb [0,∞)) = 1. The paper
is meant as a continuation of the research presented in [13].

2. The auxiliary function f̃p,a and the mapping Qp

We denote by Cmb := Cmb [0,+∞) (m ≥ 1) the Banach space of all m-times
continuously derivable, bounded with all derivatives up to the order m, functions
f : [0,+∞)→ R, with the norm

‖f‖m = max{‖f (s)‖∞ : s = 0, 1, · · · ,m},

where, as usual, f (0) = f and ‖ · ‖∞ denotes the supremum norm. For a given
compact interval J ⊂ R we denote by Cm(J) the Banach space of m-times
continuously derivable real functions defined on J , always endowed with the
‖ · ‖m-norm. Let p ∈ N be given. For f ∈ Cmb and a ∈ [1, 2], we introduce the
function fp,a ∈ Cm ([1− 1/ p

√
a, 1]) defined in the following way

fp,a(t) =
1

p
√
am

f
(
1 + p
√
a(t− 1)

)
+
m−1∑
j=0

f (j)(1)
j!

(
1− 1

p
√
am−j

)
(t− 1)j ,

whose derivatives are

f (s)
p,a(t) =

1
p
√
am−s

f (s)(1 + p
√
a(t− 1)) +

m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)
(t− 1)j−s,

for s = 0, 1, · · · ,m− 1, and

f (m)
p,a (t) = f (m)(1 + p

√
a(t− 1)).

Next we define the auxiliary function f̃p,a ∈ Cmb , an extension of fp,a, by setting

f̃p,a(t)=



1
m!f

(m)(0)
(
t− 1 + 1

p
√
a

)m
+
∑m
j=1

1
(m−j)!f

(m−j)
p,a

(
1− 1

p
√
a

)(
t− 1 + 1

p
√
a

)m−j
if t ∈

[
0, 1− 1

p
√
a

)
fp,a(t) if t ∈

[
1− 1

p
√
a
, 1
]

f(t) if t ∈ (1,+∞).

Notice that f̃p,1 = f . Moreover,

f̃ (s)
p,a(t) =



1
(m−s)!f

(m)(0)
(
t− 1 + 1

p
√
a

)m−s
+
∑m−s
j=1

1
(m−s−j)!f

(m−j)
p,a

(
1− 1

p
√
a

)(
t− 1 + 1

p
√
a

)m−s−j
if t ∈

[
0, 1− 1

p
√
a

)
f

(s)
p,a(t) if t ∈

[
1− 1

p
√
a
, 1
]

f (s)(t) if t ∈ (1,+∞),
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for s = 0, 1, · · · ,m− 1, and

f̃ (m)
p,a (t) =


f (m)(0) if t ∈

[
0, 1− 1

p
√
a

)
f

(m)
p,a (t) if t ∈

[
1− 1

p
√
a
, 1
]

f (m)(t) if t ∈ (1,+∞).

Let us observe that, for f ∈ Cmb , the norms
∥∥∥f̃ (m)
p,a

∥∥∥
∞

and
∥∥f (m)

∥∥
∞ coincide.

Now, given p ∈ N, making use of the auxiliary mapping f̃p,a, we define the
mapping Qp : B(Cmb )→ Cmb setting for f ∈ B(Cmb )

(2.1) Qpf(t) = f̃p,a(t) for a =
2

1 + ‖f‖m
and t ∈ [0,+∞).

3. Technical results on auxiliary functions of the type f̃p,a

We begin this section with the following lemma which gives estimates, given
f ∈ Cmb , of the norm

∥∥∥f̃p,a∥∥∥
m

. To this end, for p ∈ N we put

(3.1) Cp = 1− 1
p
√

2
+
(

1 + (m− 1)
(

1− 1
p
√

2m

))(
1 + (m− 1)

(
1− 1

p
√

2

))
and

(3.2) Dp = 1−m
(

1− 1
p
√

2m

)
,

we observe that Dp is positive for large enough p, and moreover

lim
p→+∞

Cp = lim
p→+∞

Dp = 1.

Lemma 3.1. Let p ∈ N, then

(3.3) Dp‖f‖m ≤
∥∥∥f̃p,a∥∥∥

m
≤ Cp‖f‖m,

for all f ∈ Cmb and for all a ∈ [1, 2].

Proof. Let p ∈ N and f ∈ Cmb . Being the result obvious when a = 1, we
assume all along this proof a ∈ (1, 2] to be arbitrarily fixed. At first, we prove
the right inequality of (3.3). To this end we will show

(3.4)
∥∥∥f̃ (s)
p,a

∥∥∥
∞
≤ Cp‖f‖m, for s = 0, 1, . . . ,m.

Since
∥∥∥f̃ (m)
p,a

∥∥∥
∞

= ‖f (m)‖∞, we immediately have

(3.5)
∥∥∥f̃ (m)
p,a

∥∥∥
∞
≤ ‖f‖m.

Assume now s ∈ {0, 1, · · · ,m− 1}, then

(3.6)
∥∥∥f̃ (s)
p,a

∥∥∥
∞

= max

 max
t∈
h
0,1− 1

p√a

i
∣∣∣f̃ (s)
p,a(t)

∣∣∣ , ∥∥∥f (s)
p,a

∥∥∥
∞
, sup
t∈(1,+∞)

|f (s)(t)|

 .
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Let us consider first
∥∥∥f (s)
p,a

∥∥∥
∞

, we have∥∥∥f (s)
p,a

∥∥∥
∞

= max
t∈
h
1− 1

p√a
,1
i
∣∣∣f (s)
p,a(t)

∣∣∣
≤ max
t∈
h
1− 1

p√a
,1
i
 1

p
√
am−s

∣∣∣f (s)(1 + p
√
a(t− 1))

∣∣∣+
m−1∑
j=s

|f (j)(1)|
(

1− 1
p
√
am−j

)
≤ 1

p
√
am−s

max
t∈[0,1]

|f (s)(t)|+ ‖f‖m
m−1∑
j=s

(
1− 1

p
√
am−j

)

≤

 1
p
√
am−s

+
m−1∑
j=s

(
1− 1

p
√
am−j

) ‖f‖m.
From the latter inequality we obtain at once

(3.7)
∥∥∥f (m−1)
p,a

∥∥∥
∞
≤ ‖f‖m,

while in the case s = 0, 1,m− 2 we can write

(3.8)
∥∥∥f (s)
p,a

∥∥∥
∞
≤

1 +
m−1∑
j=s+1

(
1− 1

p
√
am−j

) ‖f‖m.
Thus we have found, for s = 0, 1,m− 1,

(3.9)
∥∥∥f (s)
p,a

∥∥∥
∞
≤
[
1 + (m− 1)

(
1− 1

p
√

2m

)]
‖f‖m.

Next let t ∈
[
0, 1− 1

p
√
a

]
, then we have

∣∣∣f̃ (s)
p,a(t)

∣∣∣ =
∣∣∣ 1
(m− s)!

f (m)(0)
(
t− 1 +

1
p
√
a

)m−s
+
m−s∑
j=1

1
(m− s− j)!

f (m−j)
p,a

(
1− 1

p
√
a

)(
t− 1 +

1
p
√
a

)m−s−j ∣∣∣
≤
(

1− 1
p
√
a

)m−s
‖f‖m +

m−s∑
j=1

∣∣∣∣f (m−j)
p,a

(
1− 1

p
√
a

)∣∣∣∣ (1− 1
p
√
a

)m−s−j
.

Thus using (3.9) we obtain

∣∣∣f̃ (s)
p,a(t)

∣∣∣ ≤
(1− 1

p
√
a

)m−s
+
(

1 + (m− 1)
(

1− 1
p
√

2m

))m−s∑
j=1

(
1− 1

p
√
a

)m−s−j ‖f‖m
≤
[
1− 1

p
√

2
+
(

1 + (m− 1)
(

1− 1
p
√

2m

))(
1 + (m− 1)

(
1− 1

p
√

2

))]
‖f‖m,
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that is,

(3.10) max
t∈
h
0,1− 1

p√a

i
∣∣∣f̃ (s)
p,a(t)

∣∣∣ ≤ Cp‖f‖m.
Looking at (3.9), we observe that 1 + (m− 1)

(
1− 1

p√2m

)
< Cp. Therefore (3.9)

and (3.10), taking into account that supt∈(1,+∞) |f (s)(t)| ≤ ‖f‖m, imply∥∥∥f̃ (s)
p,a

∥∥∥
∞
≤ Cp‖f‖m,

for all s = 0, 1, · · · ,m − 1. The latter, together with (3.5), gives us the right
inequality of (3.3), with Cp ≥ 1 and limp→+∞ Cp = 1.

Now, we prove the left inequality of (3.3). By the definition of ‖ · ‖m there
exists s ∈ {0, 1, · · · ,m} such that

(3.11) ‖f‖m = ‖f (s)‖∞.

If (3.11) holds with s = m, then we have

(3.12) ‖f‖m = ‖f (m)‖∞ =
∥∥∥f̃ (m)
p,a

∥∥∥
∞
≤
∥∥∥f̃p,a∥∥∥

m
,

and we are done. When s, satisfying (3.11), is in {0, 1, · · · ,m− 1} we have two
cases, either ‖f (s)‖∞ coincides with supt∈(1,+∞) |f (s)(t)| or with maxt∈[0,1] |f (s)(t)|.
If ‖f (s)‖∞ = supt∈(1,+∞) |f (s)(t)|, then we immediately obtain

(3.13) ‖f‖m = ‖f (s)‖∞ = sup
t∈(1,+∞)

|f (s)(t)| ≤
∥∥∥f̃ (s)
p,a

∥∥∥
∞
.

In the second case, when ‖f (s)‖∞ = maxt∈[0,1] |f (s)(t)|, let us observe first that

(3.14)

∣∣∣∣∣∣
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)
(t− 1)j−s

∣∣∣∣∣∣ ≤ (m− 1)
(

1− 1
p
√

2m

)
‖f‖m.

Indeed,∣∣∣∣∣∣
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)
(t− 1)j−s

∣∣∣∣∣∣
≤ ‖f‖m

m−1∑
j=s

(
1− 1

p
√
am−j

)
≤ (m− 1)

(
1− 1

p
√
am

)
‖f‖m

≤ (m− 1)
(

1− 1
p
√

2m

)
‖f‖m.
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Then, using (3.14), we have∥∥∥f̃ (s)
p,a

∥∥∥
∞
≥ max
t∈
h
1− 1

p√a
,1
i
∣∣∣f (s)
p,a(t)

∣∣∣ ≥ max
t∈
h
1− 1

p√a
,1
i
[ ∣∣∣∣ 1

p
√
am−s

f (s)(1 + p
√
a(t− 1))

∣∣∣∣
−

∣∣∣∣∣∣
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)
(t− 1)j−s

∣∣∣∣∣∣
]

≥ 1
p
√

2m
‖f (s)‖∞ − (m− 1)

(
1− 1

p
√

2m

)
‖f‖m

≥
[

1
p
√

2m
− (m− 1)

(
1− 1

p
√

2m

)]
‖f‖m = Dp‖f‖m.

The latter, together with (3.12) and (3.13), gives the left inequality of (3.4), and
this completes the proof. �

The following corollary is, actually, a reformulation of Lemma 3.1.

Corollary 3.2. Let p ∈ N, then there exists εp > 0 such that

(3.15) (1− εp)‖f‖m ≤
∥∥∥f̃p,a∥∥∥

m
≤ (1 + εp)‖f‖m,

for all f ∈ Cmb and for all a ∈ [1, 2], with limp→∞ εp = 0.

Remark 3.3. The case of the Banach space Cb[0,+∞) of all continuous
and bounded functions f : [0,+∞) → R endowed with the supremum norm is
studied in [7], where it is proved the existence, for every ε > 0, of a (1 + ε)-ball-
contractive retraction, so that Wγ(Cb[0,+∞)) = 1. Here we reduce to the space
Cb[0,+∞) by allowing m = 0. Then given p ∈ N, a ∈ [1, 2] and f ∈ Cb[0,+∞)
we can write

f̃p,a(t)=


f(0) if t ∈

[
0, 1− 1

p
√
a

)
f(1 + p

√
a(t− 1)) if t ∈

[
1− 1

p
√
a
, 1
]

f(t) if t ∈ (1,+∞),

hence ‖f̃p,a‖∞ = ‖f‖∞, for any p ∈ N. This implies that we can consider f̃1,a as
auxiliary function, then if we follow the main steps of the present paper, we will
obtain again Wγ(Cb[0,+∞)) = 1, but by means of proper retractions different
from those constructed in [7].

Remark 3.4. Let us notice that the case of the Banach space Cm[0, 1] can
be deduced, from the present setting, restricting every mapping to the interval
[0, 1]. Then again we would obtain Wγ(Cm[0, 1]) = 1, but by means of proper
retractions different from those constructed in [13].

The following example shows that the inequality ‖f̃p,a‖m ≤ ‖f‖m, differently
from [7] and [13], cannot be obtained in Lemma 3.3.
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Example 3.5. Let f ∈ C1
b be defined as follows

f(t) =


−t3 + 2t2 − t+ 1 if t ∈ [0, 1]

1 if t ∈ (1,+∞) .

Then f(0) = f(1) = 1, f ′(0) = −1 and ‖f‖∞ = ‖f ′‖∞ = 1. Consequently∣∣∣f̃k,a(0)
∣∣∣ =

∣∣∣f ′(0)
(
−1 + 1

p
√
a

)
+ fp,a

(
1− 1

p
√
a

)∣∣∣
=
∣∣∣f ′(0)

(
−1 + 1

p
√
a

)
+ 1

p
√
a
f(0) + f(1)

(
1− 1

p
√
a

)∣∣∣
=
∣∣∣(1− 1

p
√
a

)
‖f‖∞ + 1

p
√
a
‖f‖∞ +

(
1− 1

p
√
a

)
‖f‖∞

∣∣∣
=
(

2− 1
p
√
a

)
‖f‖1.

Therefore we obtain

‖f̃p,a‖1 ≥ ‖f̃k,a‖∞ ≥ sup
t∈
h
0,1− 1

p√a

i
∣∣∣f̃k,a(t)

∣∣∣ ≥ (2− 1
p
√
a

)
‖f‖1,

that is, ‖f̃p,a‖1 > ‖f‖1, which is our assert. More in general, it suffices f ∈ C1
b

satisfies: f(0) = f(1) = ‖f‖∞, f ′(0) = −‖f‖∞ and ‖f ′‖∞ ≤ ‖f‖∞ (which
implies ‖f‖1 = ‖f‖∞) to infer ‖f̃p,a‖1 > ‖f‖1, as well.
The example can be suitably modified to carry out the case m > 1.

The following result shows that indeed the mapping Qp, for p large, maps
the unit ball into itselt.

Proposition 3.6. The mapping Qp, for sufficiently large p ∈ N, maps
B(Cmb ) into itself.

Proof. Let f ∈ B(Cmb ). Put ‖f‖m = w, so w ∈ [0, 1] and Qpf(t) =
f̃p, 2

1+w
(t), for t ∈ [0,+∞). We have to show ‖Qpf ||m ≤ 1, for sufficiently large

p ∈ N, which in view of (3.5) means to prove

(3.16)
∥∥∥f̃ (s)

p, 2
1+w

∥∥∥
∞
≤ 1 for s = 0, 1, . . . ,m− 1.

Having in mind (3.6), at first we consider
∥∥∥f (s)

p, 2
1+w

∥∥∥
∞

and rewrite (3.7) and (3.8)

for a = 2
1+w . So on the one hand

(3.17)
∥∥∥f (m−1)

p, 2
1+w

∥∥∥
∞
≤ w.

On the other hand, for s = 0, 1,m− 2, we have

(3.18)
∥∥∥f (s)

p, 2
1+w

∥∥∥
∞
≤ w

1 +
m−1∑
j=s+1

1− p

√(
1 + w

2

)m−j
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and, in such a case, we set

(3.19) ϕp,s(w) = w

1 +
m−1∑
j=s+1

1− p

√(
1 + w

2

)m−j .
Then ϕp,s(0) = 0, ϕp,s(1) = 1 and

ϕ′p,s(w) = 1+
m−1∑
j=s+1

1− p

√(
1 + w

2

)m−j− w

1 + w

m−1∑
j=s+1

m− j
p

p

√(
1 + w

2

)m−j
.

As the last term goes to zero for p → ∞, uniformly with respect to w, we
have that for p sufficiently large ϕ′p,s(w) > 0 for all w ∈ [0, 1]. Therefore, for
such p′s, 0 ≤ ϕp,s(w) ≤ 1 for all w ∈ [0, 1], which together with (3.17) gives∥∥∥f (s)

p, 2
1+w

∥∥∥
∞
≤ 1, for all s = 0, 1, . . . ,m− 1.

To prove (3.16), going back to (3.6), now we consider max
t∈
h
0,1− 1

p√a

i ∣∣∣f̃ (s)
p,a(t)

∣∣∣.
Let t ∈

[
0, 1− p

√
1+w

2

]
, then

∣∣∣f̃ (s)

p, 2
1+w

(t)
∣∣∣ ≤ w(1− p

√
1 + w

2

)m−s

+
m−s∑
j=1

∣∣∣∣∣f (m−j)
p, 2

1+w

(
1− p

√
1 + w

2

)∣∣∣∣∣
(

1− p

√
1 + w

2

)m−s−j
.

From the latter, we deduce
∣∣∣f̃ (m−1)

p, 2
1+w

(t)
∣∣∣ ≤ w

[
2− p

√
1+w

2

]
, therefore, for p suffi-

ciently large,
∣∣∣f̃ (m−1)

p, 2
1+w

(t)
∣∣∣ ≤ 1. On the other hand, for s = 0, 1, . . . ,m− 2,

∣∣∣f̃ (s)

p, 2
1+w

(t)
∣∣∣ ≤ w(1− p

√
1 + w

2

)m−s

+

∣∣∣∣∣f (m−1)

p, 2
1+w

(
1− p

√
1 + w

2

)∣∣∣∣∣
(

1− p

√
1 + w

2

)m−s−1

+
m−s∑
j=2

∣∣∣∣∣f (m−j)
p, 2

1+w

(
1− p

√
1 + w

2

)∣∣∣∣∣
(

1− p

√
1 + w

2

)m−s−j
,
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hence, using (3.17) and (3.18), the last together with (3.19), we can write

∣∣∣f̃ (s)

p, 2
1+w

(t)
∣∣∣ ≤ w(1− p

√
1 + w

2

)m−s
+ w

(
1− p

√
1 + w

2

)m−s−1

+
m−s∑
j=2

ϕp,m−j(w)

(
1− p

√
1 + w

2

)m−s−j

= ϕp,s(w) + w

(
1− p

√
1 + w

2

)m−s
+ w

(
1− p

√
1 + w

2

)m−s−1

+
m−s−1∑
j=2

ϕp,m−j(w)

(
1− p

√
1 + w

2

)m−s−j
.

Set

ψp,s(w) = ϕp,s(w) + w

(
1− p

√
1 + w

2

)m−s
+ w

(
1− p

√
1 + w

2

)m−s−1

+
m−s−1∑
j=2

ϕp,m−j(w)

(
1− p

√
1 + w

2

)m−s−j
.

Then ψp,s(0) = 0 and ψp,s(1) = 1. Computing the derivative

ψ′p,s(w) = ϕ′p,s(w) +

(
1− p

√
1 + w

2

)m−s
+

(
1− p

√
1 + w

2

)m−s−1

− w
(

1 + w

2

) 1
k−1 1

2p

[
(m− s)

(
1− p

√
1 + w

2

)m−s−1

+ (m− s− 1)

(
1− p

√
1 + w

2

)m−s−2 ]
+
m−s∑
j=2

ϕ′p,m−j(w)

(
1− p

√
1 + w

2

)m−s−j

−
(

1 + w

2

) 1
k−1 1

2p

m−s−1∑
j=2

ϕp,m−j(w)(m− s− j)

(
1− p

√
1 + w

2

)m−s−j−1

.

As in the previous case, it can be seen that for p sufficiently large ψ′p,s(w) > 0 for

all w ∈ [0, 1], which implies
∣∣∣f̃ (s)

p, 2
1+w

(t)
∣∣∣ ≤ 1. Since Qpf(t) = f(t) for t ∈ [1,+∞),

we infer Qpf ∈ B(Cmb ) for any p sufficiently large, as claimed. �

Before Lemma 3.8, which will allow us to deduce the continuity of the func-
tion Qp, we need the following lemma.

Lemma 3.7. Let p ∈ N be given. Let f ∈ Cmb and assume {an} to be a
sequence in [1, 2] such that an → a, as n→ +∞. Then, for any s ∈ {0, 1, · · · ,m}
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we have

(3.20)
∣∣∣∣f̃ (s)
p,an

(
1− 1

p
√
an

)
− f̃ (s)

p,a

(
1− 1

p
√
an

)∣∣∣∣→ 0

and

(3.21)
∣∣∣∣f̃ (s)
p,an

(
1− 1

p
√
a

)
− f̃ (s)

p,a

(
1− 1

p
√
a

)∣∣∣∣→ 0,

as n→ +∞.

Proof. We will prove (3.20). To calculate the term f̃
(s)
p,a

(
1− 1

p
√
an

)
we will

take into account that

1− 1
p
√
an
∈
[
1− 1

p
√
a
, 1
]

if a ≤ an, and 1− 1
p
√
an
∈
[
0, 1− 1

p
√
a

]
if an ≤ a.

Assume first s = m. Then f̃
(m)
p,an

(
1− 1

p
√
an

)
= f (m)(0), and

f̃ (m)
p,a

(
1− 1

p
√
an

)
= f (m)

p,a

(
1− 1

p
√
an

)
= f (m)

(
1− p

√
a

an

)
, if a ≤ an,

f̃ (m)
p,a

(
1− 1

p
√
an

)
= f (m)(0), if an ≤ a,

thus (3.20), trivial in the case an ≤ a, follows by the continuity of f (m) in the
case a ≤ an . We consider now the case s ∈ {0, 1, · · · ,m− 1}. On the one hand

f̃ (s)
p,an

(
1− 1

p
√
an

)
= f (s)

p,an

(
1− 1

p
√
an

)(3.22)

=
1

p
√
am−sn

f (s)(0) +
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−jn

)(
− 1

p
√
anm−j

)j−s
.

Assume first a ≤ an, we have

f̃ (s)
p,a

(
1− 1

p
√
an

)
= f (s)

p,a

(
1− 1

p
√
an

)(3.23)

=
1

p
√
am−s

f (s)

(
1 + p

√
a

an

)
+
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)(
− 1

p
√
am−j

)j−s
.

Thus, using (3.22) and (3.23), we find∣∣∣∣f̃ (s)
p,an

(
1− 1

p
√
an

)
− f̃ (s)

p,a

(
1− 1

p
√
an

)∣∣∣∣ ≤∣∣∣∣∣ 1
p
√
am−sn

f (s)(0)− 1
p
√
am−s

f (s)

(
1−

√
a

an

)∣∣∣∣∣+ ‖f‖m
m−1∑
j=s

∣∣∣∣∣− 1
p
√
am−jn

+
1

p
√
am−j

∣∣∣∣∣ ,
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where the right-hand side of the latter inequality goes to zero, as n→ +∞ due
to the hypothesis that an → a and the continuity of f (s), so (3.20) follows in the
case under consideration.
Now, for an ≤ a we have

f̃ (s)
p,a

(
1− 1

p
√
an

)
=

1
(m− s)!

f (m)(0)
(
− 1

p
√
an

+
1

p
√
a

)m−s(3.24)

+
m−s∑
j=1

1
(m− s− j)!

f (m−j)
p,a

(
1− 1

p
√
a

)(
− 1

p
√
an

+
1

p
√
a

)m−s−j

=
1

(m− s)!
f (m)(0)

(
− 1

p
√
an

+
1

p
√
a

)m−s
+
m−s−1∑
j=1

1
(m− s− j)!

f (m−j)
p,a

(
1− 1

p
√
a

)(
− 1

p
√
an

+
1

p
√
a

)m−s−j
− f (s)

p,a

(
1− 1

p
√
a

)
,

where

f (s)
p,a

(
1− 1

p
√
a

)
=

1
p
√
am−s

f (s)(0) +
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)(
− 1

p
√
a

)j−s
.

Using (3.22) and (3.24) we obtain

∣∣∣∣f̃ (s)
p,an

(
1− 1

p
√
an

)
− f̃ (s)

p,a

(
1− 1

p
√
an

)∣∣∣∣
≤ |f (m)(0)|

∣∣∣∣− 1
p
√
an

+
1

p
√
a

∣∣∣∣m−s +
m−s−1∑
j=1

∣∣∣∣f (m−j)
p,a

(
1− 1

p
√
a

)∣∣∣∣ ∣∣∣∣− 1
p
√
an

+
1

p
√
a

∣∣∣∣m−s−j

+

∣∣∣∣∣ 1
p
√
am−sn

f (s)(0) +
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−jn

)(
− 1

p
√
an

)j−s

− 1
p
√
am−s

f (s)(0) +
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)(
− 1

p
√
a

)j−s ∣∣∣∣∣
≤ ‖f‖m

∣∣∣∣− 1
p
√
an

+
1

p
√
a

∣∣∣∣m−s +
m−s−1∑
j=1

‖f (m−j)
p,a ‖∞

∣∣∣∣− 1
p
√
an

+
1

p
√
a

∣∣∣∣m−s−j

+ ‖f‖m

∣∣∣∣∣ 1
p
√
am−sn

− 1
p
√
am−s

∣∣∣∣∣+ ‖f‖m
m−1∑
j=s

∣∣∣∣∣− 1
p
√
am−jn

+
1

p
√
am−j

∣∣∣∣∣ .
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Set C ′p = 1 + (m− 1)
(

1− 1
p√2m

)
, then in view of (3.9) we obtain∣∣∣∣f̃ (s)

p,an

(
1− 1

p
√
an

)
− f̃ (s)

p,a

(
1− 1

p
√
an

)∣∣∣∣ ≤ ‖f‖m ∣∣∣∣− 1
p
√
an

+
1

p
√
a

∣∣∣∣m−s
+ C ′p‖f‖m

m−s−1∑
j=1

∣∣∣∣− 1
p
√
an

+
1

p
√
a

∣∣∣∣m−s−j

+ ‖f‖m

∣∣∣∣∣ 1
p
√
am−sn

− 1
p
√
am−s

∣∣∣∣∣+ ‖f‖m
m−1∑
j=s

∣∣∣∣∣− 1
p
√
am−jn

+
1

p
√
am−j

∣∣∣∣∣
and we get (3.20) since the right-hand side of the above inequality goes to zero,
due to the fact that an → a, as n→ +∞. The proof of (3.21) is similar, so the
proof is complete. �

Lemma 3.8. Let p ∈ N be given. Let f ∈ Cmb , and {an} a sequence in [1, 2]
such that an → a, as n→ +∞. Then

lim
n→+∞

‖f̃p,an − f̃p,a‖m = 0.

Proof. Let p ∈ N be fixed. The assert for f = 0 is immediate, so we assume
f ∈ Cmb and f 6= 0 . We prove, for any s ∈ {0, 1, · · · ,m},

(3.25)
∥∥∥f̃ (s)
p,an
− f̃ (s)

p,a

∥∥∥
∞
→ 0, as n→ +∞,

and this will give the thesis. Let ε > 0 be given. Preliminarily, since f (s) is
uniformly continuous on [0, 1], we find δ > 0 such that, for any s ∈ {0, 1, · · · ,m},

(3.26) |f (s)(t1)− f (s)(t2)| ≤ ε

for t1, t2 ∈ [0, 1] and |t2 − t1| ≤ δ.
To prove (3.25), we will evaluate

∣∣∣f̃ (s)
p,an(t)− f̃ (s)

p,a(t)
∣∣∣ separately in each of the

following cases:

(i) t ∈
[
0, 1− 1/ p

√
an
]
∩ [0, 1− 1/ p

√
a];

(ii) either t ∈
[
1− 1/ p

√
a, 1− 1/ p

√
an
]

if a ≤ an, or t ∈
[
1− 1/ p

√
an, 1− 1/ p

√
a
]

if an ≤ a;
(iii) t ∈

[
max

{
1− 1/ p

√
a, 1− 1/ p

√
an
}
, 1
]

;
(iv) t ∈ (1,+∞).

For s = m, the evaluation of
∣∣∣f̃ (m)
p,an(t)− f̃ (m)

p,a (t)
∣∣∣ will be almost immediate:

(i) and (iv) For t ∈
([

0, 1− 1/ p
√
an
]
∩ [0, 1− 1/ p

√
a]
)
∪ (1,+∞) we have

(3.27)
∣∣∣f̃ (m)
p,an

(t)− f̃ (m)
p,a (t)

∣∣∣ = 0.

(ii) Assume a ≤ an and let t ∈
[
1− 1/ p

√
a, 1− 1/ p

√
an
]
. Choose n̄ ∈ N such that∣∣∣1− p

√
a/an

∣∣∣ ≤ δ for n > n̄. Let n > n̄, then we obtain

(3.28)
∣∣∣f̃ (m)
p,an

(t)− f̃ (m)
p,a (t)

∣∣∣ =
∣∣∣f (m)(0)− f (m)(1 + p

√
a(t− 1))

∣∣∣ ≤ ε
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as in view of (3.26), denoting t1 = 0 and t2 = 1 + p
√
a(t− 1), we have

|t2 − t1| =
∣∣1 + p

√
a(t− 1)

∣∣ ≤ ∣∣∣∣1− p

√
a

an

∣∣∣∣ ≤ δ.
The case an ≤ a similar.
(iii) Let t ∈

[
max

{
1− 1/ p

√
a, 1− 1/ p

√
an
}
, 1
]
, then 1 − t < 1. Choose n̄ ∈ N

such that | p
√
a− p
√
an| ≤ δ for n > n̄. Thus, for n > n̄, we find

(3.29)∣∣∣f̃ (m)
p,an

(t)− f̃ (m)
p,a (t)

∣∣∣ =
∣∣∣f (m)(1 + p

√
an(t− 1))− f (m)(1 + p

√
a(t− 1))

∣∣∣ ≤ ε,
since, as before by (3.26), denoting t1 = 1 + p

√
an(t− 1) and t2 = 1 + p

√
a(t− 1),

we have

|t2 − t1| =
∣∣( p
√
a− p
√
an)(t− 1)

∣∣ ≤ | p
√
a− p
√
an| ≤ δ.

Then (3.27), (3.28), (3.29) and the arbitrariness of ε imply (3.25) when s = m.
Now we assume s ∈ {0, 1, · · · ,m− 1} and again we examine separately each

of the cases (i)− (iv):
(i) Let t ∈

[
0, 1− 1/ p

√
an
]
∩ [0, 1− 1/ p

√
a] . Then we have

f̃ (s)
p,a(t) =

1
(m− s)!

f (m)(0)
(
t− 1 +

1
p
√
a

)m−s
+
m−s∑
j=1

1
(m− s− j)!

f (m−j)
p,a

(
1− 1

p
√
a

)(
t− 1 +

1
p
√
a

)m−s−j
,

and analogous formula gives f̃ (s)
p,an(t), so that, adding and subtracting

f (m−j)
p,an

(
1− 1

p
√
an

)(
t− 1 +

1
p
√
a

)m−s−j
,

inside the summation sign, we obtain∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,a(t)

∣∣∣ ≤ 1
(m− s)!

∣∣∣f (m)(0)
∣∣∣ ∣∣∣∣∣
(
t− 1 +

1
p
√
an

)m−s
−
(
t− 1 +

1
p
√
a

)m−s∣∣∣∣∣
+
m−s∑
j=1

1
(m− s− j)!

∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)(
t− 1 +

1
p
√
an

)m−s−j

− f (m−j)
p,an

(
1− 1

p
√
an

)(
t− 1 +

1
p
√
a

)m−s−j ∣∣∣
+
m−s∑
j=1

1
(m− s− j)!

∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)(
t− 1 +

1
p
√
a

)m−s−j

− f (m−j)
p,a

(
1− 1

p
√
a

)(
t− 1 +

1
p
√
a

)m−s−j ∣∣∣
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≤ 1
(m− s)!

∣∣∣f (m)(0)
∣∣∣ ∣∣∣∣∣
(
t− 1 +

1
p
√
an

)m−s
−
(
t− 1 +

1
p
√
a

)m−s∣∣∣∣∣
+
m−s∑
j=1

1
(m− s− j)!

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)∣∣∣∣
∣∣∣∣∣
(
t− 1 +

1
p
√
an

)m−s−j
−
(
t− 1 +

1
p
√
a

)m−s−j∣∣∣∣∣
+
m−s∑
j=1

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)
− f (m−j)

p,a

(
1− 1

p
√
a

)∣∣∣∣ ∣∣∣∣t− 1 +
1

p
√
a

∣∣∣∣m−s−j
Let us notice that, due to the fact that max

{
t− 1 + 1/ p

√
a, t− 1 + 1/ p

√
an
}
≤ 1,

we have (we will apply it for i = m− s and i = m− s− j)∣∣∣∣∣
(
t− 1 +

1
p
√
an

)i
−
(
t− 1 +

1
p
√
a

)i∣∣∣∣∣ ≤
∣∣∣∣ 1

p
√
an
− 1

p
√
a

∣∣∣∣ i.
Consequently we have∣∣∣f̃ (s)

p,an
(t)− f̃ (s)

p,a(t)
∣∣∣

≤ ‖f‖m
∣∣∣∣ 1

p
√
an
− 1

p
√
a

∣∣∣∣+
m−s∑
j=1

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)∣∣∣∣ ∣∣∣∣ 1
p
√
an
− 1

p
√
a

∣∣∣∣
+
m−s∑
j=1

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)
− f (m−j)

p,a

(
1− 1

p
√
a

)∣∣∣∣
≤ ‖f‖m

∣∣∣∣ 1
p
√
an
− 1

p
√
a

∣∣∣∣+
m−s∑
j=1

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)∣∣∣∣ ∣∣∣∣ 1
p
√
an
− 1

p
√
a

∣∣∣∣
m−s∑
j=1

( ∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)
− f (m−j)

p,a

(
1− 1

p
√
an

)∣∣∣∣
+
∣∣∣∣f (m−j)
p,a

(
1− 1

p
√
an

)
− f (m−j)

p,a

(
1− 1

p
√
a

)∣∣∣∣ ).
Looking at the last term of the above chain of inequalities we see that it does
not depend on t and goes to zero, as n → +∞. Indeed, the first addend
‖f‖m

∣∣∣ 1
p
√
an
− 1

p
√
a

∣∣∣ → 0 since by hypothesis an → a as n → +∞. Using
Lemma 3.1 we have

m−s∑
j=1

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)∣∣∣∣ ∣∣∣∣ 1
p
√
an
− 1

p
√
a

∣∣∣∣ ≤ (m− s)Cp‖f‖m
∣∣∣∣ 1

p
√
an
− 1

p
√
a

∣∣∣∣ ,
which again goes to zero as n → +∞. For the third addend we have, by
Lemma 3.7,

lim
n→+∞

m−s∑
j=1

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)
− f (m−j)

p,an

(
1− 1

p
√
a

)∣∣∣∣ = 0,
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and, by the continuity of f (m−j)
p,a at the point

(
1− 1

p
√
a

)
,

lim
n→+∞

m−s∑
j=1

∣∣∣∣f (m−j)
p,a

(
1− 1

p
√
an

)
− f (m−j)

p,a

(
1− 1

p
√
a

)∣∣∣∣ = 0.

Therefore we obtain, as desired,

max[0,1−1/ p
√
an]∩[0,1−1/ p

√
a]

∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,a(t)

∣∣∣→ 0, as n→ +∞.

(ii) We assume a ≤ an and t ∈
[
1− 1/ p

√
a, 1− 1/ p

√
an
]
. We can write

∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,a(t)

∣∣∣ ≤ ∣∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,an

(
1− 1

p
√
a

)∣∣∣∣
(3.30)

+
∣∣∣∣f̃ (s)
p,an

(
1− 1

p
√
a

)
− f̃ (s)

p,a

(
1− 1

p
√
a

)∣∣∣∣+
∣∣∣∣f̃ (s)
p,a

(
1− 1

p
√
a

)
− f̃ (s)

p,a(t)
∣∣∣∣ .

We look, separately at each of the three terms of the right-hand side of (3.30).
In view of Lemma 3.7, the second term goes to zero, i.e.∣∣∣∣f̃ (s)

p,an

(
1− 1

p
√
a

)
− f̃ (s)

p,a

(
1− 1

p
√
a

)∣∣∣∣→ 0, as n→∞.

Looking at the first term we have:

f̃ (s)
p,an

(t) =
1

(m− s)!
f (m)(0)

(
t− 1 +

1
p
√
an

)m−s
+
m−s∑
j=1

1
(m− s− j)!

f (m−j)
p,an

(
1− 1

p
√
an

)(
t− 1 +

1
p
√
an

)m−s−j
,

f̃ (s)
p,an

(
1− 1

p
√
a

)
=

1
(m− s)!

f (m)(0)
(

1
p
√
an
− 1

p
√
a

)m−s
+
m−s∑
j=1

1
(m− s− j)!

f (m−j)
p,an

(
1− 1

p
√
an

)(
1

p
√
an
− 1

p
√
a

)m−s−j
and ∣∣∣∣t− 1 +

1
p
√
an

∣∣∣∣ ≤ ∣∣∣∣ 1
p
√
an
− 1

p
√
a

∣∣∣∣ .
Therefore, also in view of Lemma 3.1, we have∣∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,an

(
1− 1

p
√
a

)∣∣∣∣ ≤ 2|f (m)(0)|
∣∣∣∣ 1

p
√
an
− 1

p
√
a

∣∣∣∣m−s
+ 2

m−s−1∑
j=1

1
(m− s− j)!

∣∣∣∣f (m−j)
p,an

(
1− 1

p
√
an

)∣∣∣∣ ∣∣∣∣ 1
p
√
a
− 1

p
√
an

∣∣∣∣m−s−j

≤ 2|f (m)(0)|
∣∣∣∣ 1

p
√
an
− 1

p
√
a

∣∣∣∣m−s + (m− s− 1)Cp‖f‖m
∣∣∣∣ 1

p
√
an
− 1

p
√
a

∣∣∣∣m−s−j
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which shows that the first term of the right-hand side of (3.30) goes to 0, as
n→∞, independently on t.
As for the third term, since

f̃ (s)
p,a

(
1− 1

p
√
a

)
= f (s)

p,a

(
1− 1

p
√
a

)
=

1
p
√
am−s

f (s)(0) +
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)(
− 1

p
√
a

)j−s
,

f̃ (s)
p,a(t) = f (s)

p,a(t)

=
1

p
√
am−s

f (s)(1 + p
√
a(t− 1))−

m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)
(t− 1)j−s,

we have∣∣∣∣f̃ (s)
p,a

(
1− 1

p
√
a

)
− f̃ (s)

p,a(t)
∣∣∣∣ ≤ ∣∣∣f (s)(0)− f (s)(1 + p

√
a(t− 1))

∣∣∣
+

m−1∑
j=s+1

|f (j)(1)|
(j − s)!

∣∣∣∣1− 1
p
√
am−j

∣∣∣∣
∣∣∣∣∣
(
− 1

p
√
a

)j−s
− (t− 1)j−s

∣∣∣∣∣ .
Then, due to the fact that∣∣∣∣∣

(
− 1

p
√
a

)j−s
− (t− 1)j−s

∣∣∣∣∣ ≤
∣∣∣∣t− 1 +

1
p
√
a

∣∣∣∣ (j − s) ≤ ∣∣∣∣ 1
p
√
a
− 1

p
√
an

∣∣∣∣ (j − s),
we infer∣∣∣∣f̃ (s)

p,a

(
1− 1

p
√
a

)
− f̃ (s)

p,a(t)
∣∣∣∣

≤
∣∣∣f (s)(0)− f (s)(1 + p

√
a(t− 1))

∣∣∣+ ‖f‖
∣∣∣∣ 1

p
√
a
− 1

p
√
an

∣∣∣∣ (m− s− 1).

Therefore, using the hypothesis an → a as n → ∞ and the uniform continuity
of f (s), as in (3.28), we obtain

max[1−1/ p
√
a,1−1/ p

√
an]

∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,a(t)

∣∣∣→ 0 as n→ +∞.

The case an ≤ a and t ∈
[
1− 1/ p

√
an, 1− 1/ p

√
a
]

can be carried out similarly.
(iii) Let t ∈

[
max

{
1− 1/ p

√
a, 1− 1/ p

√
an
}
, 1
]
, ( 1− t < 1) then

f̃ (s)
p,an

(t) = f (s)
p,an

(t)

=
1

p
√
am−sn

f (s) (1 + p
√
an(t− 1)) +

m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−jn

)
(t− 1)j−s
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and analogous formula gives f̃ (s)
p,a(t). So we have∣∣∣f̃ (s)

p,an
(t)− f̃ (s)

p,a(t)
∣∣∣

≤

∣∣∣∣∣ 1
p
√
am−sn

f (s) (1 + p
√
an(t− 1))− 1

p
√
am−s

f (s)
(
1 + p
√
a(t− 1)

)∣∣∣∣∣
+

∣∣∣∣∣∣
m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−jn

)
(t− 1)j−s −

m−1∑
j=s

f (j)(1)
(j − s)!

(
1− 1

p
√
am−j

)
(t− 1)j−s

∣∣∣∣∣∣
and adding and subtracting 1

p√
am−s

f (s)
(
1 + p
√
an(t− 1)

)
we get

∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,a(t)

∣∣∣ ≤ ∣∣∣∣∣ 1
p
√
am−sn

f (s) (1 + p
√
an(t− 1))− 1

p
√
am−s

f (s) (1 + p
√
an(t− 1))

∣∣∣∣∣
+
∣∣∣∣ 1

p
√
am−s

f (s) (1 + p
√
an(t− 1))− 1

p
√
am−s

f (s)
(
1 + p
√
a(t− 1)

)∣∣∣∣
+
m−1∑
j=s

|f (j)(1)|
(j − s)!

|t− 1|j
∣∣∣∣∣ 1

p
√
am−jn

− 1
p
√
am−j

∣∣∣∣∣
≤ ‖f‖m

∣∣∣∣∣ 1
p
√
am−sn

− 1
p
√
am−s

∣∣∣∣∣+
∣∣∣f (s) (1 + p

√
an(t− 1))− f (s)

(
1 + p
√
a(t− 1)

)∣∣∣
+ ‖f‖m

m−1∑
j=s

∣∣∣∣∣ 1
p
√
am−jn

− 1
p
√
am−j

∣∣∣∣∣ .
Now, using the hypothesis an → a as n→∞ and the uniform continuity , as in
(3.29) of f (s), we obtain

max[max{1−1/ p
√
a,1−1/ p

√
an}, 1]

∣∣∣f̃ (s)
p,an

(t)− f̃ (s)
p,a(t)

∣∣∣→ 0 as n→ +∞.

(iv) If t > 1 we have
∣∣∣f̃ (s)
p,an(t)− f̃ (s)

p,a(t)
∣∣∣ = 0.

The proof is complete. �

4. The mapping Qp

In this section, first we prove that, for p ∈ N, the mapping Qp is Cp-ball-
contractive, with Cp given in (3.1). In other words, in view of Corollary 3.2, there
exists εp > 0, with limp→∞ εp = 0, such that Qp is (1+εp)-ball-contractive. Then
we prove that Qp, at least for large p, has positive lower γ-norm.

Proposition 4.1. For any p ∈ N, the mapping Qp is Cp-ball-contractive.

Proof. Let {fn} be a sequence in B(Cmb ) and f a function in B(Cmb ) such
that ‖fn − f‖m → 0, as n→ +∞. Then, by definition of Qp,

‖Qpfn −Qpf‖m = ‖(f̃n)p,an
− f̃p,a‖m,
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for an = 2
1+‖fn‖m

and a = 2
1+‖f‖m

, so that an ∈ [1, 2] for each n ∈ N, a ∈ [1, 2]
and an → a, as n→ +∞. Since by the hypothesis and Lemma 3.8 we have

‖(f̃n)p,an
− f̃p,a‖m ≤ ‖(f̃n)p,an

− f̃p,an
‖m + ‖f̃p,an

− f̃p,a‖m
= ‖(f̃n − f̃)p,an‖m + ‖f̃p,an − f̃p,a‖m
≤ Cp‖fn − f‖m + ‖f̃p,an

− f̃p,a‖m → 0,

we obtain that the mapping Qp is continuous. To conclude we have to show that
for M ⊆ B(Cmb )

γ(QpM) ≤ Cpγ(M).

First we observe that for ϕ ∈ Cmb the subset Ap,ϕ = {ϕ̃p,a : a ∈ [1, 2]} of Cmb
is compact. Indeed, if {ϕ̃p,an

} is a sequence of elements in Ap,ϕ and {ank
} a

subsequence of {an} which is convergent, say to a, then by Lemma 3.8 we have
‖ϕ̃p,ank

− ϕ̃p,a‖m → 0. Now let α > γ(M). Let {ϕ1, · · · , ϕl} be an α-net for M
in Cmb . Then the set Ak =

⋃l
i=1Ap,ϕi

is a compact subset of Cmb . Thus, given
δ > 0 we choose a δ-net {ψ1, · · · , ψp} for Ak in Cmb .

For g ∈ QpM arbitrarily fixed, let f ∈ M such that Qpf = g. Then let
i ∈ {1, · · · , l} be such that ‖f − ϕi‖m ≤ α and j ∈ {1, · · · , p} be such that

‖(ϕ̃i)p,a − ψj‖m ≤ δ, for a =
2

1 + ‖f‖m
.

Then by Lemma 3.1 we obtain

‖g − ψj‖m = ‖Qpf − ψj‖m = ‖f̃p,a − ψj‖m
≤ ‖f̃p,a − (ϕ̃i)p,a‖+ ‖(ϕ̃i)p,a − ψj‖m
≤ Cp‖f − ϕl ‖m + δ ≤ Cpα+ δ,

that is, γ(QpM) ≤ Cpα + δ. The arbitrariness of δ gives the desired result
γ(QpM) ≤ Cpγ(M). �

Our next aim is to prove Dp

m+1γ(M) ≤ γ(QpM), for M ⊆ B(Cmb ). To this
end, given p ∈ N, g ∈ Cmb and a ∈ [1, 2] we introduce gp,a : [0,+∞) → R, in
such a way to have gp,a ∈ Cmb , by setting

gp,a(t) =

{
p
√
amg

(
1 + 1

p
√
a
(t− 1)

)
+
∑m−1
j=0

g(j)(1)
j!

(
1− p
√
am−j

)
(t− 1)j if t ∈ [0, 1]

g(t) if t ∈ (1,+∞).

Computing the derivatives

(gp,a)(s) (t) =


p
√
am−sg(s)

(
1 + 1

p
√
a
(t− 1)

)
+∑m−1

j=s
g(j)(1)
(j−s)!

(
1− p
√
am−j

)
(t− 1)j−s if t ∈ [0, 1]

g(s)(t) if t ∈ (1,+∞),
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for s ∈ {0, 1, · · · ,m− 1} and

(gp,a)(m) (t) =

{
g(m)

(
1 + 1

p
√
a
(t− 1)

)
if t ∈ [0, 1]

g(m)(t) if t ∈ (1,+∞).

We need the following lemma.

Lemma 4.2. Let p ∈ N. Let f ∈ B(Cmb ), g ∈ Cmb and a ∈ [1, 2]. Then∥∥∥f̃p,a − (g̃p,a)p,a
∥∥∥
m
≤ (m+ 1)

∥∥∥f̃p,a − g∥∥∥
m
.

Proof. Let p ∈ N. Let f ∈ B(Cmb ), g ∈ Cmb and a ∈ [1, 2]. Let us write
explicitly (g̃p,a)p,a, we have

(g̃p,a)p,a(t) =


∑m
i=0

1
i! g

(i)
(

1− 1
p
√
a

)(
t− 1 + 1

p
√
a

)i
if t ∈

[
0, 1− 1

p
√
a

]
g(t) if t ∈

(
1− 1

p
√
a
,+∞

)
.

Moreover, for s = 1, · · · ,m, we have
(4.1)

(g̃p,a)(s)
p,a(t) =


∑m−s
i=0

1
i! g

(s+i)
(

1− 1
p
√
a

)(
t− 1 + 1

p
√
a

)i
if t ∈

[
0, 1− 1

p
√
a

]
g(s)(t) if t ∈

(
1− 1

p
√
a
,+∞

)
,

which, in particular, for s = m reduces to

(g̃p,a)(m)
p,a (t) =

 g(m)
(

1− 1
p
√
a

)
if t ∈

[
0, 1− 1

p
√
a

]
g(m)(t) if t ∈

(
1− 1

p
√
a
,+∞

)
.

To prove the thesis we will show that, for s = 0, 1, · · · ,m,∥∥∥f̃ (s)
p,a − (g̃p,a)(s)

p,a

∥∥∥
∞
≤ (m+ 1)

∥∥∥f̃p,a − g∥∥∥
m
.

Since, for each s,??? ∥∥∥f̃ (s)
p,a − (g̃p,a)(s)

p,a

∥∥∥
∞

=
{

max
t∈
h
0,1− 1

p√a

i
∣∣∣f̃ (s)
p,a(t)− (g̃p,a)(s)

p,a(t)
∣∣∣ ,

sup
t∈
“

1− 1
p√a
,+∞

”
∣∣∣f̃ (s)
p,a(t)− g(s)(t)

∣∣∣ },
it suffices to prove

(4.2) max
t∈
h
0,1− 1

p√a

i
∣∣∣f̃ (s)
p,a(t)− (g̃p,a)(s)

p,a(t)
∣∣∣ ≤ (m+ 1)

∥∥∥f̃p,a − g∥∥∥
m
.
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Let us consider first the case s = m. Since, for t ∈
[
0, 1− 1

p
√
a

]
, f̃ (m)

p,a (t) =

f (m)(0) = f̃
(m)
p,a

(
1− 1

p
√
a

)
, we have

max
t∈
h
0,1− 1

p√a

i
∣∣∣f̃ (m)
p,a (t)− (g̃p,a)(m)

p,a (t)
∣∣∣ =

∣∣∣∣f̃ (m)
p,a

(
1− 1

p
√
a

)
− g(m)

(
1− 1

p
√
a

)∣∣∣∣
≤
∥∥∥f̃ (m)
p,a − g(m)

∥∥∥
∞
≤
∥∥∥f̃p,a − g∥∥∥

m
,

hence (4.2) holds. Next let s ∈ {0, 1, · · · ,m− 1}. Let t ∈
[
0, 1− 1

p
√
a

]
. Then

f̃ (s)
p,a(t) =

1
(m− s)!

f (m)(0)
(
t− 1 +

1
p
√
a

)m−s
+
m−s∑
j=1

1
(m− s− j)!

f (m−j)
p,a

(
1− 1

p
√
a

)(
t− 1 +

1
p
√
a

)m−s−j
.

Since f (m)(0) = f
(m)
p,a

(
1− 1

p
√
a

)
and f

(s)
p,a

(
1− 1

p
√
a

)
= f̃

(s)
p,a

(
1− 1

p
√
a

)
, for all s,

we can write

f̃ (s)
p,a(t) =

m−s∑
j=0

1
(m− s− j)!

f̃ (m−j)
p,a

(
1− 1

p
√
a

)(
t− 1 +

1
p
√
a

)m−s−j
.

Moreover, changing the summation index (letting j = m− s− i) in (4.1) we can
write

(g̃p,a)(s)
p,a(t) =

m−s∑
j=0

1
(m− s− j)!

g(m−j)
(

1− 1
p
√
a

) (
t− 1 +

1
p
√
a

)m−s−j
.

Therefore we obtain

max
t∈
h
0,1− 1

p√a

i
∣∣∣f̃ (s)
p,a(t)− (g̃p,a)(s)

p,a(t)
∣∣∣ ≤ m−s∑

j=0

∣∣∣∣f̃ (m−j)
p,a

(
1− 1

p
√
a

)
− g(m−j)

(
1− 1

p
√
a

)∣∣∣∣
≤
m−s∑
j=0

∥∥∥f̃ (m−j)
p,a − g(m−j)

∥∥∥
∞
≤ (m+ 1)

∥∥∥f̃p,a − g∥∥∥
m
.

Hence (4.2) is proved and the proof is complete. �

Now given p ∈ N, let Dp as given in (3.2), then we have

Proposition 4.3. Let p ∈ N. Given M ⊆ B(Cmb ) we have

(4.3)
Dp

m+ 1
γ(M) ≤ γ(QpM).

In particular, the following estimate of the lower Hausdorff measure of noncom-
pactness ω(Qp) of Qp holds:

ω(Qp) ≥
Dp

m+ 1
.
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Proof. Let p ∈ N, M ⊆ B(Cmb ) and η > γ(QpM). Fix an η-net {λ1, · · · , λq}
for QpM in Cmb . Similarly as in Lemma 3.8 it can be proved that given λ ∈ Cmb
and a sequence {an} in [1, 2] such that an → a, then ‖λp,an −λp,a‖m → 0. Then
we have that Ap,λi = {λp,ai : a ∈ [1, 2]} is a compact subset of Cmb and therefore
Ap =

⋃q
i=1A

p,λi is a compact set in Cmb . Hence, given δ > 0 we choose a δ-net
{ξ1, · · · , ξr} for Ap in Cmb .
Now let f ∈M . Fix i ∈ {1, · · · , q} such that ‖Qpf−λi‖m ≤ η. Since (λi)

p, 2
1+‖f‖m

is in Ap, we can choose j ∈ {1, · · · , r} such that ‖(λi)
2

1+‖f‖m − ξj‖m ≤ δ. Then,
also in view of Lemma 3.1

‖f − ξj‖m ≤ ‖f − (λi)
p, 2

1+‖f‖m ‖m + ‖(λi)p,
2

1+‖f‖m − ξj‖m

≤ 1
Dp

∥∥∥f̃p, 2
1+‖f‖m

− ( ˜(λi)p,a)p, 2
1+‖f‖m

∥∥∥
m

+ δ.

By Lemma 4.2 we have∥∥∥∥f̃p, 2
1+‖f‖m

− (
˜

(λi)
p, 2

1+‖f‖m )p, 2
1+‖f‖m

∥∥∥∥
m

≤ (m+ 1)‖f̃p, 2
1+‖f‖m

− λi‖m,

hence we obtain

‖f − ξj‖m ≤
m+ 1
Dp

∥∥∥f̃p, 2
1+‖f‖m

− λi
∥∥∥
m

+ δ

=
m+ 1
Dp

‖Qpf − λi‖m + δ ≤ m+ 1
Dp

η + δ.

Therefore γ(M) ≤ ((m+ 1)/Dp) η + δ, so that

Dp

m+ 1
γ(M) ≤ η +

Dp

m+ 1
δ,

which by the arbitrariness of δ gives (4.3). Thus the proof is complete. �

5. The mapping Pu,p

For p ∈ N and u > 0, we define Pu,p : B(Cmb )→ Cmb by setting

(Pu,pf)(t) =


− u

(m+1)!

(
t− 1 + p

√
1+‖f‖m

2

)m+1

if t ∈
[
0, 1− p

√
1+‖f‖m

2

]
0 if t ∈

(
1− p

√
1+‖f‖m

2 ,+∞
)
.

We observe that if f and g ∈ B(Cmb ) and ‖f‖m = ‖g‖m we have Pu,pf = Pu,pg,
in particular Pu,pf coincides with the null function if ‖f‖m = 1.
Clearly Pu,pf ∈ Cmb , and for s = 0, 1, · · · ,m we have

(Pu,pf)(s)(t) =


− u

(m+1−s)!

(
t− 1 + p

√
1+‖f‖m

2

)m+1−s

if t ∈
[
0, 1− p

√
1+‖f‖m

2

]
0 if t ∈

(
1− p

√
1+‖f‖m

2 ,+∞
)
.
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Lemma 5.1. Let p ∈ N and u > 0. Let {fn} be a sequence in B(Cmb ) and
f ∈ B(Cmb ) such that ‖fn‖m → ‖f‖m, then

‖Pu,pfn − Pu,pf‖m → 0.

Proof. We will show that for each s = 0, 1, · · · ,m we have

(5.1) ‖(Pu,pfn)(s) − (Pu,pf)(s)‖∞ → 0,

To this end, fix s ∈ {0, 1, · · · ,m} and ε > 0. Find n such that for all n ≥ n we
have ∣∣∣∣∣ p

√
1 + ‖f‖m

2
− p

√
1 + ‖fn‖m

2

∣∣∣∣∣ ≤ ε

u
.

Let n ≥ n. We will prove

(5.2)
∣∣∣(Pu,pfn)(s)(t)− (Pu,pf)(s)(t)

∣∣∣ ≤ ε, for all t ∈ [0,+∞).

If t ∈
[
0, 1− p

√
1+‖f‖m

2

]
∩
[
0, 1− p

√
1+‖fn‖m

2

]
, then∣∣(Pu,pfn)(s)(t)− (Pu,pf)(s)(t)

∣∣
≤ u

∣∣∣∣∣
(
t− 1 + p

√
1+‖fn‖m

2

)m+1−s

−
(
t− 1 + p

√
1+‖f‖m

2

)m+1−s
∣∣∣∣∣

≤ u

∣∣∣∣ p

√
1+‖fn‖m

2 − p

√
1+‖f‖m

2

∣∣∣∣ (m+ 1− s) ≤ u εu = ε.

Assume now ‖f‖m ≤ ‖fn‖m and t ∈
[
1− p

√
1+‖fn‖m

2 , 1− p

√
1+‖f‖m

2

]
, then

∣∣(Pu,pfn)(s)(t)− (Pu,pf)(s)(t)
∣∣ ≤ u

∣∣∣∣t− 1 + p

√
1+‖f‖m

2

∣∣∣∣m+1−s

≤ u

∣∣∣∣ p

√
1+‖fn‖m

2 − p

√
1+‖f‖m

2

∣∣∣∣m+1−s

≤ u

∣∣∣∣ p

√
1+‖fn‖m

2 − p

√
1+‖f‖m

2

∣∣∣∣ ≤ u εu = ε.

If we assume ‖fn‖m ≤ ‖f‖m and t ∈
[
1− p

√
1+‖f‖m

2 , 1− p

√
1+‖fn‖m

2

]
, then in a

similarly way we find ∣∣∣(Pu,pfn)(s)(t)− (Pu,pf)(s)(t)
∣∣∣ ≤ ε.

Since for t ∈
(

max
{

1− p

√
1+‖f‖m

2 , 1− p

√
1+‖fn‖m

2

}
, +∞

)
we have

(Pu,pfn)(s)(t) = (Pu,pf)(s)(t) = 0,

the proof is complete. �
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Proposition 5.2. Let u > 0. The mapping Pu,p is compact.

Proof. Let {fn} be a sequence in B(Cmb ) and f ∈ B(Cmb ) such that ‖fn −
f‖m → 0. Then ‖fn‖m → ‖f‖m, and Lemma 5.1 implies that Pu,p is continuous.

Now we prove that the mapping Pu,p is sequentially-compact. To this end let
{gn} be a sequence in Pu,p(B(Cmb )). For each n ∈ N fix hn ∈ B(Cmb ) such that
gn = Pu,phn. Passing, if necessary, to a subsequence, we may assume without
loss of generality that ‖hn‖m → c ∈ [0, 1]. Now we choose h ∈ B(Cmb ) such
that ‖h‖m = c so that ‖hn‖m → ‖h‖m. Set g := Pu,ph. Since ‖gn − g‖m =
‖Pu,phn − Pu,ph‖m, Lemma 5.1 implies ‖gn − g‖m → 0, as desired. �

6. The retraction Ru,p

Let p ∈ N. Let u > 0 be arbitrarily fixed. We define Tu,p : B(Cmb ) → Cmb ,
by setting

Tu,p = Qp + Pu,p.

The mapping Tu,p, being a compact perturbation of Qp, is Cp-ball-contractive.
Our first step is that of proving that inff∈B(Cm

b ) ‖Tu,pf‖m > 0 (next Proposition
6.2). To this end, preliminarily let us consider the function hu,p : [0, 1] → R,
defined by

hu,p(c) =
u

2

(
1− p

√
1 + c

2

)
− c, for c ∈ [0, 1].

Since hu,p(0)hu,p(1) < 0 and hu,p is strictly decreasing on [0, 1], there exists a
unique solution cu,p ∈ (0, 1) of the equation

(6.1) c =
u

2

(
1− p

√
1 + c

2

)
.

Observe that, for any fixed p, we have

(6.2) lim
u→+∞

cu,p = 1.

Moreover, the following lemma holds true.

Lemma 6.1. Let p ∈ N and u > 0. Given f ∈ B(Cmb ), if

‖f‖m ≤ cu,p

where cu,p ∈ (0, 1) is the unique solution of the equation

c =
u

2

(
1− p

√
1 + c

2

)
,

then we have

max

{
−‖f (m)‖∞ + u

(
1− p

√
1 + ‖f‖m

2

)
, ‖f (m)‖∞

}
≥ cu,p.
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Proof. Let p ∈ N. Let u > 0. Then, for every c ∈ [0, 1], we define the
auxiliary function ϕc,p : [0, c]→ R by setting

ϕc,p(x) = −x+ u

(
1− p

√
1 + c

2

)
, for x ∈ [0, c].

Further, we set

ξu,p = max{c : c ∈ [0, 1] and ϕc,p(x) ≥ x for x ∈ [0, c]}.

Since, for every c ∈ [0, 1], the function ϕc,p is decreasing on [0, c], we have that
ξu,p = cu,p. Then, for every c ∈ [0, cu,p] the function ψc,p : [0, 1]→ R defined by

ψc,p(x) = max{x, ϕc,p(x)} = max

{
x, −x+ u

(
1− p

√
1 + c

2

)}

satisfies

(6.3) min
x∈[0,c]

ψc,p(x) ≥ cu,p.

Now let f ∈ B(Cmb ) with ‖f‖m ≤ cu,p. Then the result follows by (6.3) consid-
ering c = ‖f‖m and setting x = ‖f (m)‖∞ . �

Having in mind the constant Dp given in (3.2), without loss of generality we
may assume Dp > 0. We prove the following result.

Proposition 6.2. Let p ∈ N, u > 0 and f ∈ B(Cmb ). Then

‖Tu,pf‖m ≥ Dp cu,p.

Proof. Fix p ∈ N and u > 0. Let f ∈ B(Cmb ). Assume first ‖f‖m ≤ cu,p.
We have

‖Tu,pf‖m ≥ ‖(Tu,pf)(m)‖∞ = supt∈[0,+∞)

∣∣(Tu,pf)(m)(t)
∣∣

= max
{

max
t∈
»
0,1− p

q
1+‖f‖m

2

– ∣∣∣∣f (m)(0)− u
(
t− 1 + p

√
1+‖f‖m

2

)∣∣∣∣ ,
max

t∈
»
1− p
q

1+‖f‖m
2 ,1

– ∣∣∣f (m)
(

1 + p

√
2

1+‖f‖m
(t− 1)

)∣∣∣ , supt∈(1,+∞) |f (m)(t)|
}

≥ max
{
f (m)(0) + u

(
1− p

√
1+‖f‖m

2

)
, maxt∈[0,1] |f (m)(t)|, supt∈(1,+∞) |f (m)(t)|

}
≥ max

{
−‖f (m)‖∞ + u

(
1− p

√
1+‖f‖m

2

)
, ‖f (m)‖∞

}
.

Thus, in view of Lemma 6.1 we obtain ‖Tu,pf‖m ≥ cu,p.
Now assume cu,p ≤ ‖f‖m ≤ 1, and let s ∈ {0, · · · ,m} such that ‖f‖m = ‖f (s)‖∞.
We distinguish two cases, that is, whether or not s = m. In the first case, s = m,
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we have

‖Tu,pf‖m ≥ ‖(Tu,pf)(m)‖∞

≥ max

{
max

t∈
»
1− p
q

1+‖f‖m
2 ,1

– ∣∣∣f (m)
(

1 + p

√
2

1+‖f‖m
(t− 1)

)∣∣∣ , supt∈(1,+∞) |f (m)(t)|

}
= ‖f (m)‖∞ = ‖f‖m ≥ cu,p.

In the case in which s ∈ {0, · · · ,m − 1}, if ‖f (s)‖∞ = supt∈(1,+∞) |f (s)(t)| we
have

‖Tu,pf‖m ≥ ‖(Tu,pf)(s)‖∞
≥ supt∈(1,+∞) |f (s)(t)| = ‖f (s)‖∞ = ‖f‖m ≥ cu,p.

Finally, always in the case s ∈ {0, · · · ,m − 1}, if ‖f (s)‖∞ = maxt∈[0,1]

∣∣f (s)(t)
∣∣

we have
‖Tu,pf‖m ≥ ‖(Tu,pf)(s)‖∞

≥ max
t∈
»
1− p
q

1+‖f‖m
2 ,1

– ∣∣∣∣f (s)

p, 2
1+‖f‖m

(t)
∣∣∣∣ .

Therefore using Lemma 3.1

‖Tu,pf‖m ≥ Dp ‖f‖m ≥ Dp cu,p,

and this completes the proof. �

We are now in a position to prove our main result.

Theorem 6.3. For any ε > 0 there exists a proper k-ball-contractive re-
traction of the closed unit ball B(Cmb ) onto S(Cmb ) with k < 1 + ε, so that
Wγ(Cmb ) = 1.

Proof. Given u > 0, in view of Proposition 6.2, we have ‖Tu,pf‖m > 0 so
we can define a retraction Ru,p : B(Cmb )→ S(Cmb ) by setting

Ru,pf =
1

‖Tu,pf‖m
Tu,pf.

Let now M ⊆ B(Cmb ). Since Pu,p is a compact mapping, from Proposition 4.1
and Proposition 4.3 it follows that

(6.4)
Dp

m+ 1
γ(M) ≤ γ(Tu,pM) ≤ Cp γ(M).

Moreover by the definition of Ru,p and by Proposition 6.2 we get

Ru,pM ⊆
[
0,

1
Dpcu,p

]
· Tu,pM.

Therefore using the property of absorption invariance of γ and the right hand
side of (6.4) we infer

γ(Ru,pM) ≤ Cp
Dpcu,p

γ(M),
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this means that the retractionRu,p is ku,p- ball-contractive with ku,p = Cp/(Dpcu,p).
On the other hand from Lemma 3.1 and the definition of Pu,p we get

‖Tu,pf‖m ≤ ‖Qpf‖m + ‖Pu,pf‖m ≤ Cp +
u

2
for all f ∈ B(Cmb ), and so we have

Tu,pM ⊆
[
0, Cp +

u

2

]
·Ru,pM.

Therefore we get

γ(Tu,pM) ≤
(
Cp +

u

2

)
γ(Ru,pM),

and from the left hand side of (6.4)

Dp

m+ 1

(
Cp +

u

2

)−1

γ(M) ≤ γ(Ru,pM).

The latter inequality implies

ω(Ru,p) ≥
Dp

m+ 1

(
Cp +

u

2

)−1

,

consequently ω(Ru,p) > 0 for every u > 0, so that Ru,p is a proper retraction.
Now given ε > 0, since

lim
u→∞

Cp
Dpcu,p

= 1,

we can find ū > 0 such that kū < 1 + ε. Then letting k = kū we see that Rū,k is
the desired proper k-ball-contractive retraction. �

Finally, we apply the result of this paper to consider the formulation of
Birkhoff-Kellogg type theorems in Cmb . Let us recall that Guo in [18, Lemma 1],
proved that if a completely continuous operator A : Ω → X, defined on the
closure Ω of a bounded open subset Ω of an infinite-dimensional Banach space
(X, ‖·‖), satisfies the Birkhoff-Kellogg condition inff∈∂Ω ‖Af‖ > 0 and Af 6= λf

for f ∈ ∂Ω and 0 < λ ≤ 1, then the Leray-Schauder degree deg(I −A,Ω, 0) = 0.
In [11] the result of Guo has been extended to k-ball-contractive operators,
under a condition, inff∈∂Ω ‖Af‖ > kWγ(X) supf∈∂Ω ‖f‖, depending on the
Wośko constant of the space, and considering the Nussbaum fixed point index
ind(A,Ω) of A on Ω (see [1]), which in the case of completely continuous operator
agrees with Leray-Schauder degree. In particular, from [11, Theorem 3.2], being
Wγ(Cmb ) = 1, we have the following result in Cmb .

Theorem 6.4. Let Ω be a bounded open set in Cmb , with 0 ∈ Ω, and let
A : Ω→ Cmb be a k-ball-contractive operator with k < 1, satisfying

(6.5) inf
f∈∂Ω

‖Af‖ > k sup
f∈∂Ω

‖f‖

and Af 6= λf for f ∈ ∂Ω and k < λ ≤ 1, then ind(A,Ω) = 0.
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Notice that condition (6.5) in Cmb , as well in any space in which the Wośko
constant is 1, is optimal, indeed if A : B(Cmb ) → Cmb is defined by Af = −kf
with k < 1, then inff∈∂B(Cm

b ) ||Af || > 0, and f ∈ ∂B(Cmb ) implies Af 6= λf

for λ > 0, but ind(A,B(Cmb ) \ ∂B(Cmb )) = 1. Now we state the results on the
existence of eigenvalues and eigenvectors and on the extension of Guo’s domain
compression and expansion fixed point theorem ([19]) to k-ball-contractions (cf.
[11, Corollary 3.5] and [11, Corollary 3.7], respectively).

Theorem 6.5. Let Ω be a bounded open set in Cmb , with 0 ∈ Ω, and let
A : Ω→ Cmb be a k-ball-contractive operator (for any k > 0), satisfying

inf
f∈∂Ω

||Af || > k sup
f∈∂Ω

||f ||.

Then there exist λ > k and fλ ∈ ∂Ω such that λfλ = Afλ, and also there exist
µ < −k and fµ ∈ ∂Ω such that µfµ = Afµ.

Theorem 6.6. Let Ω1 and Ω2 bounded open sets in Cmb , such that 0 ∈ Ω1

and Ω1 ⊂ Ω2. Let A : Ω2 → Cmb be a k-ball-contractive operator, with k < 1.
Suppose that one of the following groups of conditions holds

inff∈∂Ω1 ||Af || > k supx∈∂Ω1
||f ||

‖Af‖ ≥ ‖f‖ f ∈ ∂Ω1

‖Af‖ ≤ ‖f‖ f ∈ ∂Ω2

,

or 
inff∈∂Ω2 ||Af || > k supf∈∂Ω2

||f ||

‖Af‖ ≥ ‖f‖ f ∈ ∂Ω2

‖Af‖ ≤ ‖f‖ f ∈ ∂Ω1.

Then A has at least a fixed point in Ω2 \ Ω1.

For details and analogous results for condensing operators, we refer to [11].
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