By using an abstract coincidence point theorem for sequentially weakly continuous maps the existence of at least one positive solution is obtained for a periodic second order boundary value problem with a reaction term involving the derivative of the solution u: the so called convention term. As a consequence of the main result also the existence of at least one positive solution is obtained for a parameter-depending problem.

Candito P., Livrea R. (2020). Existence Results for Periodic Boundary Value Problems with a Convenction Term. In S. Pinelas, J.R. Graef, S. Hilger, P. Kloeden, C. Schinas (a cura di), Differential and Difference Equations with Applications (pp. 593-602). Springer [10.1007/978-3-030-56323-3_43].

Existence Results for Periodic Boundary Value Problems with a Convenction Term

Livrea R.
2020

Abstract

By using an abstract coincidence point theorem for sequentially weakly continuous maps the existence of at least one positive solution is obtained for a periodic second order boundary value problem with a reaction term involving the derivative of the solution u: the so called convention term. As a consequence of the main result also the existence of at least one positive solution is obtained for a parameter-depending problem.
Settore MAT/05 - Analisi Matematica
978-3-030-56322-6
978-3-030-56323-3
https://link.springer.com/chapter/10.1007/978-3-030-56323-3_43
Candito P., Livrea R. (2020). Existence Results for Periodic Boundary Value Problems with a Convenction Term. In S. Pinelas, J.R. Graef, S. Hilger, P. Kloeden, C. Schinas (a cura di), Differential and Difference Equations with Applications (pp. 593-602). Springer [10.1007/978-3-030-56323-3_43].
File in questo prodotto:
File Dimensione Formato  
CanditoLivrea-Lisbon2019-Submission.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pre-print
Dimensione 267.93 kB
Formato Adobe PDF
267.93 kB Adobe PDF Visualizza/Apri
484558_1_.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 260.7 kB
Formato Adobe PDF
260.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/516099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact