Information on impact locations, impact situations and cyclist and pedestrian dynamics in impacts with passenger cars is fundamental for the development of effective solutions to improve cyclist and pedestrian protection. Accidentology research shows that cyclists typically have a higher impact location than the pedestrian, with a larger share of injuries from the windscreen area. Majority of accidents in Palermo, in the last years, happens at urban street (84%) that involve teenager (6.4%). In this paper simulation study captures dynamics and injuries to head and chest for teenager between a generic bicycle and a car model that is suitable for pedestrian or cyclist safety. Multibody simulation of the crash is executed by making use of Visual Nastran. Dummy, car and bicycle are those used in previous works. The attention is on a teenage cyclist, because the data on this scope are found in literature with difficulty. Twelve full ‐scale crash tests (passenger car versus cyclist) have as main parameters: vehicle speed (20, 30, 40 and 50 km/h), with three different positions of the cyclist respect to the vehicle: frontal, side and rear. Head impact location (top of bonnet, windscreen), given by crash test, shows that cyclist protection should be higher in the windscreen area than pedestrian countermeasures. In particular the injury of the head is analyzed using the parameter HIC and the chest injury is analyzed by 3 ms criterion; the likelihood AIS 4+ is calculated, concluding that head injury is more dangerous in the case of teenage pedestrian, while chest injury is more dangerous in the case of the teenage cyclist; moreover he has greater possibility of survival than the adult cyclist. Accidentology, simulation and crash test show that the windscreen is a frequent head and chest impact location.

Carollo, F., Virzì Mariotti, G., Scalici, E. (2014). Injury Evaluation in Teenage Cyclist-Vehicle Crash by Multibody Simulation. WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE, 11(11), 203-217.

Injury Evaluation in Teenage Cyclist-Vehicle Crash by Multibody Simulation

CAROLLO, Filippo;VIRZI' MARIOTTI, Gabriele;SCALICI, Edoardo
2014-01-01

Abstract

Information on impact locations, impact situations and cyclist and pedestrian dynamics in impacts with passenger cars is fundamental for the development of effective solutions to improve cyclist and pedestrian protection. Accidentology research shows that cyclists typically have a higher impact location than the pedestrian, with a larger share of injuries from the windscreen area. Majority of accidents in Palermo, in the last years, happens at urban street (84%) that involve teenager (6.4%). In this paper simulation study captures dynamics and injuries to head and chest for teenager between a generic bicycle and a car model that is suitable for pedestrian or cyclist safety. Multibody simulation of the crash is executed by making use of Visual Nastran. Dummy, car and bicycle are those used in previous works. The attention is on a teenage cyclist, because the data on this scope are found in literature with difficulty. Twelve full ‐scale crash tests (passenger car versus cyclist) have as main parameters: vehicle speed (20, 30, 40 and 50 km/h), with three different positions of the cyclist respect to the vehicle: frontal, side and rear. Head impact location (top of bonnet, windscreen), given by crash test, shows that cyclist protection should be higher in the windscreen area than pedestrian countermeasures. In particular the injury of the head is analyzed using the parameter HIC and the chest injury is analyzed by 3 ms criterion; the likelihood AIS 4+ is calculated, concluding that head injury is more dangerous in the case of teenage pedestrian, while chest injury is more dangerous in the case of the teenage cyclist; moreover he has greater possibility of survival than the adult cyclist. Accidentology, simulation and crash test show that the windscreen is a frequent head and chest impact location.
2014
Carollo, F., Virzì Mariotti, G., Scalici, E. (2014). Injury Evaluation in Teenage Cyclist-Vehicle Crash by Multibody Simulation. WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE, 11(11), 203-217.
File in questo prodotto:
File Dimensione Formato  
a025708-091.pdf

Solo gestori archvio

Descrizione: articolo principale
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/111793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact