The role of mannitol and malic acid in the regulation of diurnal leaf water relations was investigated in ‘Biancolilla’ (high-mannitol) and ‘Cerasuola’ (low-mannitol) olive trees. Photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), stomatal conductance (gs), transpiration rate (T), relative water content (RWC), mannitol and malic acid were measured in ‘Biancolilla’ and ‘Cerasuola’ leaves during a dry and hot day of summer in Sicily. In general, leaves of ‘Biancolilla’ trees exhibited greater mannitol content, higher gs and T, but lower RWC than leaves of ‘Cerasuola’ trees. Differences in gs and T between the two cultivars were evident mainly in mid to late morning. ‘Biancolilla’ leaves accumulated mannitol at midday and again late in the evening. Stomatal responses to VPD were RWC dependent, and limited somewhat T, only in ‘Biancolilla’. Mannitol was directly related to RWC, and may play an osmotic role, in ‘Biancolilla’ leaves, whereas ‘Cerasuola’ leaves remained well hydrated by just transpiring less and regardless of mannitol. A day-time accumulation and night-time utilization of mannitol in ‘Biancolilla’ leaves is proposed as an efficient mechanism to regulate water status and growth.

Lo Bianco, R., Avellone, G. (2014). Diurnal regulation of leaf water status in high- and low-mannitol olive cultivars. PLANTS, 3, 196-208 [10.3390/plants3020196].

Diurnal regulation of leaf water status in high- and low-mannitol olive cultivars

LO BIANCO, Riccardo;AVELLONE, Giuseppe
2014-01-01

Abstract

The role of mannitol and malic acid in the regulation of diurnal leaf water relations was investigated in ‘Biancolilla’ (high-mannitol) and ‘Cerasuola’ (low-mannitol) olive trees. Photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), stomatal conductance (gs), transpiration rate (T), relative water content (RWC), mannitol and malic acid were measured in ‘Biancolilla’ and ‘Cerasuola’ leaves during a dry and hot day of summer in Sicily. In general, leaves of ‘Biancolilla’ trees exhibited greater mannitol content, higher gs and T, but lower RWC than leaves of ‘Cerasuola’ trees. Differences in gs and T between the two cultivars were evident mainly in mid to late morning. ‘Biancolilla’ leaves accumulated mannitol at midday and again late in the evening. Stomatal responses to VPD were RWC dependent, and limited somewhat T, only in ‘Biancolilla’. Mannitol was directly related to RWC, and may play an osmotic role, in ‘Biancolilla’ leaves, whereas ‘Cerasuola’ leaves remained well hydrated by just transpiring less and regardless of mannitol. A day-time accumulation and night-time utilization of mannitol in ‘Biancolilla’ leaves is proposed as an efficient mechanism to regulate water status and growth.
2014
Lo Bianco, R., Avellone, G. (2014). Diurnal regulation of leaf water status in high- and low-mannitol olive cultivars. PLANTS, 3, 196-208 [10.3390/plants3020196].
File in questo prodotto:
File Dimensione Formato  
PublishedManuscript.pdf

accesso aperto

Descrizione: articolo
Dimensione 846.87 kB
Formato Adobe PDF
846.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/99423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact