In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino, defined as the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. We show how it can be used to obtain an efficient algorithm for computing all k-convex polyominoes of size n. More precisely, such an algorithm uses space O(n) and runs in constant amortized time.

Brocchi, S., Castiglione, G., Massazza, P. (2017). On the Exhaustive Generation of k-Convex Polyominoes. THEORETICAL COMPUTER SCIENCE, 664, 54-66 [10.1016/j.tcs.2016.02.006].

On the Exhaustive Generation of k-Convex Polyominoes

CASTIGLIONE, Giuseppa;
2017-01-01

Abstract

In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino, defined as the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. We show how it can be used to obtain an efficient algorithm for computing all k-convex polyominoes of size n. More precisely, such an algorithm uses space O(n) and runs in constant amortized time.
2017
Gascom 2014
2014
Brocchi, S., Castiglione, G., Massazza, P. (2017). On the Exhaustive Generation of k-Convex Polyominoes. THEORETICAL COMPUTER SCIENCE, 664, 54-66 [10.1016/j.tcs.2016.02.006].
File in questo prodotto:
File Dimensione Formato  
[29]Gascom2014.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 96.3 kB
Formato Adobe PDF
96.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/99388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact