Nephroblastoma (Wilms’ tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith–Wiedemann, Simpson–Golabi–Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 gene. Subsequently, we identified a somatic PTCH1 nonsense mutation in the renal tumor of one patient. In addition, by array comparative genomic hybridization method, we analyzed the DNA extracted from the blood samples of nine patients with overgrowth syndrome and WT, but did not identify any deleterious chromosomal imbalances in these patients. These findings strongly suggest that patients with constitutional 9q22.3 microdeletion have an increased risk of WT, and that PTCH1 have a role in the pathogenesis of nephroblastomas.

Isidor, B., Bourdeaut, F., Lafon, D., Plessis, G., Lacaze, E., Kannengiesser, C., et al. (2012). Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas. EUROPEAN JOURNAL OF HUMAN GENETICS, ahead of print(7), 784-787 [10.1038/ejhg.2012.252].

Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas

PICCIONE, Maria;
2012-01-01

Abstract

Nephroblastoma (Wilms’ tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith–Wiedemann, Simpson–Golabi–Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 gene. Subsequently, we identified a somatic PTCH1 nonsense mutation in the renal tumor of one patient. In addition, by array comparative genomic hybridization method, we analyzed the DNA extracted from the blood samples of nine patients with overgrowth syndrome and WT, but did not identify any deleterious chromosomal imbalances in these patients. These findings strongly suggest that patients with constitutional 9q22.3 microdeletion have an increased risk of WT, and that PTCH1 have a role in the pathogenesis of nephroblastomas.
Settore MED/38 - Pediatria Generale E Specialistica
Settore MED/03 - Genetica Medica
Isidor, B., Bourdeaut, F., Lafon, D., Plessis, G., Lacaze, E., Kannengiesser, C., et al. (2012). Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas. EUROPEAN JOURNAL OF HUMAN GENETICS, ahead of print(7), 784-787 [10.1038/ejhg.2012.252].
File in questo prodotto:
File Dimensione Formato  
Wilms.pdf

Solo gestori archvio

Descrizione: articolo principale
Dimensione 383.85 kB
Formato Adobe PDF
383.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/97951
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact