The Reverse Electrodialysis (RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the RED unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), a process simulator previously proposed by the same authors has been modified in order to predict the behaviour of a cross-flow RED unit. The model was then adopted to investigate the influence of the most important variables (i.e. solution properties and stack geometry) on the overall process performance. In particular, the use of different concentrations and flow rates for the feed streams have been considered, as well as different aspect ratios in asymmetric stacks. Moreover, the influence of the scaling-up a RED unit was investigated, starting from a 22x22 cm2 100 cell pairs lab-stack, and simulating the performance of larger stacks up to a 44x88 cm2 500 cell pairs unit. Finally, different scenarios are proposed for a prototype-scale RED plant, providing useful indications for the technology scale-up towards 1 kW of power production, relevant to the installation of a real prototype plant in Trapani (Italy) being the final objective of the R&D activities of the REAPower project.

Tedesco, M., Mazzola, P., Tamburini, A., Micale, G., Bogle, I., Papapetrou, M., et al. (2015). Analysis and simulation of scale-up potentials in reverse electrodialysis. DESALINATION AND WATER TREATMENT, 55(12), 3391-3403 [10.1080/19443994.2014.947781].

Analysis and simulation of scale-up potentials in reverse electrodialysis

TEDESCO, Michele Alessandro;TAMBURINI, Alessandro;MICALE, Giorgio Domenico Maria;CIPOLLINA, Andrea
2015-01-01

Abstract

The Reverse Electrodialysis (RED) process has been widely accepted as a viable and promising technology to produce electric energy from salinity difference (salinity gradient power - e.g. using river water/seawater, or seawater and concentrated brines). Recent R&D efforts demonstrated how an appropriate design of the RED unit and a suitable selection of process conditions may crucially enhance the process performance. With this regard, a process simulator was developed and validated with experimental data collected on a lab-scale unit, providing a new modelling tool for process optimisation. In this work, performed within the REAPower project (www.reapower.eu), a process simulator previously proposed by the same authors has been modified in order to predict the behaviour of a cross-flow RED unit. The model was then adopted to investigate the influence of the most important variables (i.e. solution properties and stack geometry) on the overall process performance. In particular, the use of different concentrations and flow rates for the feed streams have been considered, as well as different aspect ratios in asymmetric stacks. Moreover, the influence of the scaling-up a RED unit was investigated, starting from a 22x22 cm2 100 cell pairs lab-stack, and simulating the performance of larger stacks up to a 44x88 cm2 500 cell pairs unit. Finally, different scenarios are proposed for a prototype-scale RED plant, providing useful indications for the technology scale-up towards 1 kW of power production, relevant to the installation of a real prototype plant in Trapani (Italy) being the final objective of the R&D activities of the REAPower project.
2015
Tedesco, M., Mazzola, P., Tamburini, A., Micale, G., Bogle, I., Papapetrou, M., et al. (2015). Analysis and simulation of scale-up potentials in reverse electrodialysis. DESALINATION AND WATER TREATMENT, 55(12), 3391-3403 [10.1080/19443994.2014.947781].
File in questo prodotto:
File Dimensione Formato  
Tedesco_etal_Analysis&Simulation-of-scaleup-potentials-in-RED_DWT2014.pdf

Solo gestori archvio

Descrizione: Manuscript
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Tedesco_et_al_Cyprus2014.pdf

accesso aperto

Descrizione: Post Print
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/97909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 26
social impact