Let f be a function defined on [0, 1] and taking values in a Banach space X. We show that the limit set IHK(f) of Henstock-Kurzweil integral sums is non-empty and convex when the function f has an integrable majorant and X is separable. In the same setting we give a complete description of the limit set.

Caponetti, D., Di Piazza, L., Kadets, V. (2014). Description of the limit set of Henstock-Kurzweil integral sums of vector-valued functions. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 421(2), 1151-1162 [10.1016/j.jmaa.2014.07.050].

Description of the limit set of Henstock-Kurzweil integral sums of vector-valued functions

CAPONETTI, Diana;DI PIAZZA, Luisa;
2014-01-01

Abstract

Let f be a function defined on [0, 1] and taking values in a Banach space X. We show that the limit set IHK(f) of Henstock-Kurzweil integral sums is non-empty and convex when the function f has an integrable majorant and X is separable. In the same setting we give a complete description of the limit set.
2014
Caponetti, D., Di Piazza, L., Kadets, V. (2014). Description of the limit set of Henstock-Kurzweil integral sums of vector-valued functions. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 421(2), 1151-1162 [10.1016/j.jmaa.2014.07.050].
File in questo prodotto:
File Dimensione Formato  
elsarticle_CDK_def.pdf

Solo gestori archvio

Descrizione: Articolo
Dimensione 263.01 kB
Formato Adobe PDF
263.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/97506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact