We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.

Bongiorno, B., Di Piazza, L., Musial, K. (2014). Differentiation of an additive interval measure with values in a conjugate Banach space. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 50(50.1), 169-180 [DOI: 10.7169/facm/2014.50.1.6.].

Differentiation of an additive interval measure with values in a conjugate Banach space

DI PIAZZA, Luisa;
2014

Abstract

We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.
Settore MAT/05 - Analisi Matematica
Bongiorno, B., Di Piazza, L., Musial, K. (2014). Differentiation of an additive interval measure with values in a conjugate Banach space. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 50(50.1), 169-180 [DOI: 10.7169/facm/2014.50.1.6.].
File in questo prodotto:
File Dimensione Formato  
Differentiation_Coniugate_space-GP.pdf

accesso aperto

Descrizione: pdf
Dimensione 129.08 kB
Formato Adobe PDF
129.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/93967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact