We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.
Bongiorno, B., Di Piazza, L., Musial, K. (2014). Differentiation of an additive interval measure with values in a conjugate Banach space. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 50(50.1), 169-180 [DOI: 10.7169/facm/2014.50.1.6.].
Differentiation of an additive interval measure with values in a conjugate Banach space
DI PIAZZA, Luisa;
2014-01-01
Abstract
We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Differentiation_Coniugate_space-GP.pdf
accesso aperto
Descrizione: pdf
Dimensione
129.08 kB
Formato
Adobe PDF
|
129.08 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.