A micrometeorological approach based on the surface energy balance was adopted to estimate evapotranspiration fluxes and crop coefficient data from an irrigated cactus pear [Opuntia ficus-indica L. (Mill.)] orchard under Mediterranean climatic conditions. Highfrequency temperature readings were taken above the canopy top to get sensible heat flux values (HSR) using the surface renewal technique. These values were compared against eddy covariance sensible heat fluxes (HEC) for calibration. Latent heat flux (or evapotranspiration, ET) was obtained by solving the daily energy balance equation. Measurements of soil hydraulic components were integrated with the analysis of the surface energy fluxes and crop development in terms of phenology and aboveground biomass accumulation. Microlysimeters were used to compute evaporation rates, allowing the separation of daily transpiration from ET data. Ecophysiological measurements were carried to estimate dry weight accumulation and partitioning. Cactus pear evapotranspired a total of approximately 286 and 252 mm of water during the two monitored growing seasons, respectively. Average daily values of crop (ETc) and reference (ET0) evapotranspiration were in the order of 2.5 and 5.0 mm, respectively, with a corresponding value of the mean crop coefficient of approximately 0.40. The annual dry mass fixed per single tree was 38.8 1.3 kg, with a total production of 12.9 t ha−1, which is comparable to many C3 and C4 plants and resulted in a water use efficiency (WUE) of 4.6 and 4.4 gDMkgH2O−1 in 2009 and 2010, respectively. The stem area index (SAI) was 3.5.

Consoli, S., Inglese, G., Inglese, P. (2013). Determination of Evapotranspiration and Annual Biomass Productivity of a Cactus Pear [Opuntia ficus-indica L. (Mill.)] Orchard in a Semiarid Environment. JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 139(139), 680-690 [10.1061/ (ASCE)IR.1943-4774.0000589].

Determination of Evapotranspiration and Annual Biomass Productivity of a Cactus Pear [Opuntia ficus-indica L. (Mill.)] Orchard in a Semiarid Environment

INGLESE, Guglielmo;INGLESE, Paolo
2013-01-01

Abstract

A micrometeorological approach based on the surface energy balance was adopted to estimate evapotranspiration fluxes and crop coefficient data from an irrigated cactus pear [Opuntia ficus-indica L. (Mill.)] orchard under Mediterranean climatic conditions. Highfrequency temperature readings were taken above the canopy top to get sensible heat flux values (HSR) using the surface renewal technique. These values were compared against eddy covariance sensible heat fluxes (HEC) for calibration. Latent heat flux (or evapotranspiration, ET) was obtained by solving the daily energy balance equation. Measurements of soil hydraulic components were integrated with the analysis of the surface energy fluxes and crop development in terms of phenology and aboveground biomass accumulation. Microlysimeters were used to compute evaporation rates, allowing the separation of daily transpiration from ET data. Ecophysiological measurements were carried to estimate dry weight accumulation and partitioning. Cactus pear evapotranspired a total of approximately 286 and 252 mm of water during the two monitored growing seasons, respectively. Average daily values of crop (ETc) and reference (ET0) evapotranspiration were in the order of 2.5 and 5.0 mm, respectively, with a corresponding value of the mean crop coefficient of approximately 0.40. The annual dry mass fixed per single tree was 38.8 1.3 kg, with a total production of 12.9 t ha−1, which is comparable to many C3 and C4 plants and resulted in a water use efficiency (WUE) of 4.6 and 4.4 gDMkgH2O−1 in 2009 and 2010, respectively. The stem area index (SAI) was 3.5.
2013
Settore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree
Consoli, S., Inglese, G., Inglese, P. (2013). Determination of Evapotranspiration and Annual Biomass Productivity of a Cactus Pear [Opuntia ficus-indica L. (Mill.)] Orchard in a Semiarid Environment. JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 139(139), 680-690 [10.1061/ (ASCE)IR.1943-4774.0000589].
File in questo prodotto:
File Dimensione Formato  
Consoli&Inglese2013.pdf

accesso aperto

Dimensione 929.65 kB
Formato Adobe PDF
929.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/89075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact