This work investigates two strategies for zero-shot non-intrusive speech assessment leveraging large language models. First, we explore the audio analysis capabilities of GPT-4o. Second, we propose GPT-Whisper, which uses Whisper as an audio-to-text module and evaluates the text’s naturalness via targeted prompt engineering. We evaluate the assessment metrics predicted by GPT-4o and GPT-Whisper, examining their correlation with human-based quality and intelligibility assessments and the character error rate (CER) of automatic speech recognition. Experimental results show that GPT-4o alone is less effective for audio analysis, while GPT-Whisper achieves higher prediction accuracy, has moderate correlation with speech quality and intelligibility, and has higher correlation with CER. Compared to SpeechLMScore and DNSMOS, GPT-Whisper excels in intelligibility metrics, but performs slightly worse than SpeechLMScore in quality estimation. Furthermore, GPT-Whisper outperforms supervised non-intrusive models MOS-SSL and MTI-Net in Spearman’s rank correlation for Whisper’s CER. These findings validate GPT-Whisper’s potential for zero-shot speech assessment without requiring additional training data.
Zezario, R.E., Siniscalchi, S.M., Wang, H.-., Tsao, Y. (2025). A Study on Zero-shot Non-intrusive Speech Assessment using Large Language Models. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (pp. 1-5). Institute of Electrical and Electronics Engineers Inc. [10.1109/ICASSP49660.2025.10889809].
A Study on Zero-shot Non-intrusive Speech Assessment using Large Language Models
Siniscalchi S. M.;
2025-01-01
Abstract
This work investigates two strategies for zero-shot non-intrusive speech assessment leveraging large language models. First, we explore the audio analysis capabilities of GPT-4o. Second, we propose GPT-Whisper, which uses Whisper as an audio-to-text module and evaluates the text’s naturalness via targeted prompt engineering. We evaluate the assessment metrics predicted by GPT-4o and GPT-Whisper, examining their correlation with human-based quality and intelligibility assessments and the character error rate (CER) of automatic speech recognition. Experimental results show that GPT-4o alone is less effective for audio analysis, while GPT-Whisper achieves higher prediction accuracy, has moderate correlation with speech quality and intelligibility, and has higher correlation with CER. Compared to SpeechLMScore and DNSMOS, GPT-Whisper excels in intelligibility metrics, but performs slightly worse than SpeechLMScore in quality estimation. Furthermore, GPT-Whisper outperforms supervised non-intrusive models MOS-SSL and MTI-Net in Spearman’s rank correlation for Whisper’s CER. These findings validate GPT-Whisper’s potential for zero-shot speech assessment without requiring additional training data.| File | Dimensione | Formato | |
|---|---|---|---|
|
A_Study_on_Zero-shot_Non-intrusive_Speech_Assessment_using_Large_Language_Models.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
808.02 kB
Formato
Adobe PDF
|
808.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


