In the context of abstract fuzzy algebra, the study of algebraic structures is undertaken through the employment of fuzzy set theory as a substitute for classical set theory. In this regard, Lie algebra structures are no exception. The present work is thus dedicated to fuzzy Lie algebra structures, which are fundamentally fuzzy vector spaces. The work, comprises a concise collection of results concerning fuzzy bases of a fuzzy Lie algebra, providing necessary and sufficient conditions, and offering illustrative examples to demonstrate the practical application of these results.

Filippone, G., Galici, M., La Rosa, G., Piazza, F., Tabacchi, M.E. (2025). A new definition of fuzzy nilpotent Lie algebras. In 2025 IEEE International Conference on Fuzzy Systems (FUZZ) (pp. 1-5) [10.1109/fuzz62266.2025.11152208].

A new definition of fuzzy nilpotent Lie algebras

Filippone, Giuseppe;Galici, Mario;La Rosa, Gianmarco;Piazza, Federica;Tabacchi, Marco Elio
2025-01-01

Abstract

In the context of abstract fuzzy algebra, the study of algebraic structures is undertaken through the employment of fuzzy set theory as a substitute for classical set theory. In this regard, Lie algebra structures are no exception. The present work is thus dedicated to fuzzy Lie algebra structures, which are fundamentally fuzzy vector spaces. The work, comprises a concise collection of results concerning fuzzy bases of a fuzzy Lie algebra, providing necessary and sufficient conditions, and offering illustrative examples to demonstrate the practical application of these results.
2025
Settore MATH-01/A - Logica matematica
Settore MATH-02/B - Geometria
Settore MATH-02/A - Algebra
Settore INFO-01/A - Informatica
Filippone, G., Galici, M., La Rosa, G., Piazza, F., Tabacchi, M.E. (2025). A new definition of fuzzy nilpotent Lie algebras. In 2025 IEEE International Conference on Fuzzy Systems (FUZZ) (pp. 1-5) [10.1109/fuzz62266.2025.11152208].
File in questo prodotto:
File Dimensione Formato  
A_new_definition_of_fuzzy_nilpotent_Lie_algebras.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 310.21 kB
Formato Adobe PDF
310.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/689394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact