In this work, we extend the integration of fuzzy logic in Multi-Criteria Group Decision-Making (MCGDM) problems and its application to ontologies. We define an MCGDM framework where experts assign scores and weights to ontology classes, and each one of them is assigned a fuzzy weight, reflecting their relative importance in the decision process. Each expert selects their best choice among the alternatives and a final best compromise A∗ is derived using a minimal mean distance operator, ensuring that the aggregated result optimally reflects expert opinions while minimizing deviations from individual preferences.

Castronovo, L., Filippone, G., Galici, M., La Rosa, G., Tabacchi, M.E. (2025). Ontology Aggregation with Maximum Consensus Based on a Fuzzy Multi-criteria Group Decision-Making Method. In M. Baczyński, B. De Baets, M. Holčapek, V. Kreinovich, J. Medina (a cura di), Advances in Fuzzy Logic and Technology (pp. 76-87). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-97228-7_7].

Ontology Aggregation with Maximum Consensus Based on a Fuzzy Multi-criteria Group Decision-Making Method

Castronovo, Lydia
;
Filippone, Giuseppe;Galici, Mario;La Rosa, Gianmarco;Tabacchi, Marco Elio
2025-07-11

Abstract

In this work, we extend the integration of fuzzy logic in Multi-Criteria Group Decision-Making (MCGDM) problems and its application to ontologies. We define an MCGDM framework where experts assign scores and weights to ontology classes, and each one of them is assigned a fuzzy weight, reflecting their relative importance in the decision process. Each expert selects their best choice among the alternatives and a final best compromise A∗ is derived using a minimal mean distance operator, ensuring that the aggregated result optimally reflects expert opinions while minimizing deviations from individual preferences.
11-lug-2025
Settore MATH-01/A - Logica matematica
Settore MATH-02/B - Geometria
Settore INFO-01/A - Informatica
9783031972270
9783031972287
Castronovo, L., Filippone, G., Galici, M., La Rosa, G., Tabacchi, M.E. (2025). Ontology Aggregation with Maximum Consensus Based on a Fuzzy Multi-criteria Group Decision-Making Method. In M. Baczyński, B. De Baets, M. Holčapek, V. Kreinovich, J. Medina (a cura di), Advances in Fuzzy Logic and Technology (pp. 76-87). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-97228-7_7].
File in questo prodotto:
File Dimensione Formato  
978-3-031-97228-7_7.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 606.29 kB
Formato Adobe PDF
606.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/686566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact