Electrocardiogram (ECG) feature extraction is fundamental for detecting pathological conditions, yet traditional methods based on statistical summaries often fail to capture subtle morphological alterations. In this study, we adopt a functional spectral approach to analyze multichannel ECG data, preserving its temporal structure. We compare two methodologies for estimating the spectral density operator: Graphical Functional Principal Component Analysis (GFPCA), which computes cross-covariance at individual time points, and freqdom.fda, which extracts spectral features from basis expansion coefficients. In a case study of detachment episodes, freqdom.fda shows a better bias-variance tradeoff, effectively filtering noise while preserving key spectral patterns distinguishing regular and symptomatic states.

Antonino Gagliano, Chiara Di Maria, Gianluca Sottile, Sarah Beutler-Traktovenko, Luigi Augugliaro, Valeria Vitelli (2025). Multichannel ECG Spectral Analysis via Functional Data Methods: A Structured Approach to Dynamic Signal Dependencies. In E. Di Bella (a cura di), Statistics for Innovation III - SIS 2025, Short Papers, Contributed Sessions 2 (pp. 281-287) [10.1007/978-3-031-95995-0].

Multichannel ECG Spectral Analysis via Functional Data Methods: A Structured Approach to Dynamic Signal Dependencies

Antonino Gagliano
;
Chiara Di Maria;Gianluca Sottile;Luigi Augugliaro;
2025-01-01

Abstract

Electrocardiogram (ECG) feature extraction is fundamental for detecting pathological conditions, yet traditional methods based on statistical summaries often fail to capture subtle morphological alterations. In this study, we adopt a functional spectral approach to analyze multichannel ECG data, preserving its temporal structure. We compare two methodologies for estimating the spectral density operator: Graphical Functional Principal Component Analysis (GFPCA), which computes cross-covariance at individual time points, and freqdom.fda, which extracts spectral features from basis expansion coefficients. In a case study of detachment episodes, freqdom.fda shows a better bias-variance tradeoff, effectively filtering noise while preserving key spectral patterns distinguishing regular and symptomatic states.
2025
Settore STAT-01/A - Statistica
9783031959943
9783031959950
Antonino Gagliano, Chiara Di Maria, Gianluca Sottile, Sarah Beutler-Traktovenko, Luigi Augugliaro, Valeria Vitelli (2025). Multichannel ECG Spectral Analysis via Functional Data Methods: A Structured Approach to Dynamic Signal Dependencies. In E. Di Bella (a cura di), Statistics for Innovation III - SIS 2025, Short Papers, Contributed Sessions 2 (pp. 281-287) [10.1007/978-3-031-95995-0].
File in questo prodotto:
File Dimensione Formato  
GaglianoEtAl_SIS_25.pdf

Solo gestori archvio

Descrizione: Paper Convegno SIS2025
Tipologia: Versione Editoriale
Dimensione 6.23 MB
Formato Adobe PDF
6.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/683990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact