Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Archivio istituzionale della ricerca dell'Università degli Studi di Palermo
The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie of order Brms ≃ (50–100) nG (20 Mpc/ds)(100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E−2. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.
Abdul Halim A., Abreu P., Aglietta M., Allekotte I., Cheminant K.A., Almela A., et al. (2024). Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024(7) [10.1088/1475-7516/2024/07/094].
Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data
Abdul Halim A.;Abreu P.;Aglietta M.;Allekotte I.;Cheminant K. A.;Almela A.;Aloisio R.;Alvarez-Muniz J.;Ammerman Yebra J.;Anastasi G. A.;Anchordoqui L.;Andrada B.;Andringa S.;Apollonio L.;Aramo C.;Araujo Ferreira P. R.;Arnone E.;Arteaga Velazquez J. C.;Assis P.;Avila G.;Avocone E.;Bakalova A.;Barbato F.;Bartz Mocellin A.;Bellido J. A.;Berat C.;Bertaina M. E.;Bhatta G.;Bianciotto M.;Biermann P. L.;Binet V.;Bismark K.;Bister T.;Biteau J.;Blazek J.;Bleve C.;Blumer J.;Bohacova M.;Boncioli D.;Bonifazi C.;BonneauArbeletche L.;Borodai N.;Brack J.;Brichetto Orchera P. G.;Briechle F. L.;Bueno A.;Buitink S.;Buscemi M.;Busken M.;Bwembya A.;Caballero-Mora K. S.;Cabana-Freire S.;Caccianiga L.;Campuzano F.;Caruso R.;Castellina A.;Catalani F.;Cataldi G.;Cazon L.;Cerda M.;Cermenati A.;Chinellato J. A.;Chudoba J.;Chytka L.;Clay R. W.;Cobos Cerutti A. C.;Colalillo R.;Coluccia M. R.;Conceicao R.;Condorelli A.;Consolati G.;Conte M.;Convenga F.;dos Santos D. C.;Costa P. J.;Covault C. E.;Cristinziani M.;Cruz Sanchez C. S.;Dasso S.;Daumiller K.;Dawson B. R.;de Almeida R. M.;de Jesus J.;de Jong S. J.;de Mello Neto J. R. T.;De Mitri I.;de Oliveira J.;de Oliveira Franco D.;de Palma F.;de Souza V.;de Souza de Errico B. P.;De Vito E.;Del Popolo A.;Deligny O.;Denner N.;Deval L.;di Matteo A.;Dobre M.;Dobrigkeit C.;D'Olivo J. C.;Domingues Mendes L. M.;Dorosti Q.;dos Anjos J. C.;dos Anjos R. C.;Ebr J.;Ellwanger F.;Emam M.;Engel R.;Epicoco I.;Erdmann M.;Etchegoyen A.;Evoli C.;Falcke H.;Farrar G.;Fauth A. C.;Feldbusch F.;Fenu F.;Fernandes A.;Fick B.;Figueira J. M.;Filipcic A.;Fitoussi T.;Flaggs B.;Fodran T.;Fujii T.;Fuster A.;Galea C.;Garcia B.;Gaudu C.;Gherghel-Lascu A.;Giaccari U.;Glombitza J.;Gobbi F.;Gollan F.;Golup G.;Gomez Berisso M.;Gomez Vitale P. F.;Gongora J. P.;Gonzalez J. M.;Gonzalez N.;Gora D.;Gorgi A.;Gottowik M.;Guarino F.;Guedes G. P.;Guido E.;Gulzow L.;Hahn S.;Hamal P.;Hampel M. R.;Hansen P.;Harari D.;Harvey V. M.;Haungs A.;Hebbeker T.;Hojvat C.;Horandel J. R.;Horvath P.;Hrabovsky M.;Huege T.;Insolia A.;Isar P. G.;Janardhana V.;Janecek P.;Jilek V.;Johnsen J. A.;Jurysek J.;Kampert K. -H.;Keilhauer B.;Khakurdikar A.;Kizakke Covilakam V. V.;Klages H. O.;Kleifges M.;Knapp F.;Kohler J.;Krieger F.;Kunka N.;Lago B. L.;Langner N.;de Oliveira M. A. L.;Lema-Capeans Y.;Letessier-Selvon A.;Lhenry-Yvon I.;Lopes L.;Lu L.;Luce Q.;Lundquist J. P.;Machado Payeras A.;Majercakova M.;Mandat D.;Manning B. C.;Mantsch P.;Mariani F. M.;Mariazzi A. G.;Maris I. C.;Marsella G.;Martello D.;Martinelli S.;Martinez Bravo O.;Martins M. A.;Mathes H. -J.;Matthews J.;Matthiae G.;Mayotte E.;Mayotte S.;Mazur P. O.;Medina-Tanco G.;Meinert J.;Melo D.;Menshikov A.;Merx C.;Michal S.;Micheletti M. I.;Miramonti L.;Mollerach S.;Montanet F.;Morejon L.;Mulrey K.;Mussa R.;Namasaka W. M.;Negi S.;Nellen L.;Nguyen K.;Nicora G.;Niechciol M.;Nitz D.;Nosek D.;Novotny V.;Nozka L.;Nucita A.;Nunez L. A.;Oliveira C.;Palatka M.;Pallotta J.;Panja S.;Parente G.;Paulsen T.;Pawlowsky J.;Pech M.;Pekala J.;Pelayo R.;Pelgrims V.;Pereira L. A. S.;Pereira Martins E. E.;Perez Armand J.;Perez Bertolli C.;Perrone L.;Petrera S.;Petrucci C.;Pierog T.;Pimenta M.;Platino M.;Pont B.;Pothast M.;Pourmohammad Shahvar M.;Privitera P.;Prouza M.;Querchfeld S.;Rautenberg J.;Ravignani D.;Reginatto Akim J. V.;Reininghaus M.;Reuzki A.;Ridky J.;Riehn F.;Risse M.;Rizi V.;de Carvalho W. R.;Rodriguez E.;Rojo J. R.;Roncoroni M. J.;Rossoni S.;Roth M.;Roulet E.;Rovero A. C.;Ruehl P.;Saftoiu A.;Saharan M.;Salamida F.;Salazar H.;Salina G.;Sanabria Gomez J. D.;Sanchez F.;Santos E. M.;Santos E.;Sarazin F.;Sarmento R.;Sato R.;Savina P.;Schafer C. M.;Scherini V.;Schieler H.;Schimassek M.;Schimp M.;Schmidt D.;Scholten O.;Schoorlemmer H.;Schovanek P.;Schroder F. G.;Schulte J.;Schulz T.;Sciutto S. J.;Scornavacche M.;Sedoski A.;Segreto A.;Sehgal S.;Shivashankara S. U.;Sigl G.;Silli G.;Sima O.;Simkova K.;Simon F.;Smau R.;Smida R.;Sommers P.;Soriano J. F.;Squartini R.;Stadelmaier M.;Stanic S.;Stasielak J.;Stassi P.;Strahnz S.;Straub M.;Suomijarvi T.;Supanitsky A. D.;Svozilikova Z.;Szadkowski Z.;Tairli F.;Tapia A.;Taricco C.;Timmermans C.;Tkachenko O.;Tobiska P.;Todero Peixoto C. J.;Tome B.;Torres Z.;Travaini A.;Travnicek P.;Tueros M.;Unger M.;Uzeiroska R.;Vaclavek L.;Vacula M.;Valdes Galicia J. F.;Valore L.;Varela E.;Vasickova V.;Vasquez-Ramirez A.;Veberic D.;Vergara Quispe I. D.;Verzi V.;Vicha J.;Vink J.;Vorobiov S.;Watanabe C.;Weindl A.;Wiencke L.;Wilczynski H.;Wittkowski D.;Wundheiler B.;Yue B.;Yushkov A.;Zapparrata O.;Zas E.;Zavrtanik D.;Zavrtanik M.
2024-07-31
Abstract
The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie of order Brms ≃ (50–100) nG (20 Mpc/ds)(100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E−2. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.
Abdul Halim A., Abreu P., Aglietta M., Allekotte I., Cheminant K.A., Almela A., et al. (2024). Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024(7) [10.1088/1475-7516/2024/07/094].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/667615
Citazioni
ND
1
3
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.