Let $A$ be an associative algebra endowed with a superautomorphism $\varphi.$ In this paper we completely classify the finite dimensional simple algebras with superautomorphism of order $\leq 2.$ Moreover, after generalizing the Wedderburn-Malcev Theorem in this setting, we prove that the sequence of $\varphi$-codimensions of $A$ is polynomially bounded if and only if the variety generated by $A$ does not contain the group algebra of $\mathbb{Z}_2$ and the algebra of $2\times 2$ upper triangular matrices with suitable superautomorphisms.

Ioppolo A., La Mattina D. (2024). Algebras with superautomorphism: simple algebras and codimension growth. ISRAEL JOURNAL OF MATHEMATICS [10.1007/s11856-024-2663-4].

Algebras with superautomorphism: simple algebras and codimension growth

La Mattina D.
2024-01-01

Abstract

Let $A$ be an associative algebra endowed with a superautomorphism $\varphi.$ In this paper we completely classify the finite dimensional simple algebras with superautomorphism of order $\leq 2.$ Moreover, after generalizing the Wedderburn-Malcev Theorem in this setting, we prove that the sequence of $\varphi$-codimensions of $A$ is polynomially bounded if and only if the variety generated by $A$ does not contain the group algebra of $\mathbb{Z}_2$ and the algebra of $2\times 2$ upper triangular matrices with suitable superautomorphisms.
2024
Settore MATH-02/A - Algebra
Ioppolo A., La Mattina D. (2024). Algebras with superautomorphism: simple algebras and codimension growth. ISRAEL JOURNAL OF MATHEMATICS [10.1007/s11856-024-2663-4].
File in questo prodotto:
File Dimensione Formato  
Ioppolo La Mattina IJM 2024.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 281.37 kB
Formato Adobe PDF
281.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/665489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact