We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image (Ω) of a reference set Ω and we present some real analyticity results for the dependence upon the map. Then we introduce a perforated domain Ω(ϵ) with a small hole of size ϵ and we compute power series expansions that describe the layer potentials on Ω(ϵ) when the parameter ϵ approximates the degenerate value ϵ = 0.
Dalla Riva M., Luzzini P., Musolino P. (2022). Shape analyticity and singular perturbations for layer potential operators. ESAIM. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 56(6), 1889-1910 [10.1051/m2an/2022057].
Shape analyticity and singular perturbations for layer potential operators
Dalla Riva M.;
2022-11-01
Abstract
We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image (Ω) of a reference set Ω and we present some real analyticity results for the dependence upon the map. Then we introduce a perforated domain Ω(ϵ) with a small hole of size ϵ and we compute power series expansions that describe the layer potentials on Ω(ϵ) when the parameter ϵ approximates the degenerate value ϵ = 0.File | Dimensione | Formato | |
---|---|---|---|
m2an220046.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
530.34 kB
Formato
Adobe PDF
|
530.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.