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SHAPE ANALYTICITY AND SINGULAR PERTURBATIONS FOR LAYER
POTENTIAL OPERATORS

Matteo Dalla Riva1 , Paolo Luzzini2,* and Paolo Musolino3

Abstract. We study the effect of regular and singular domain perturbations on layer potential oper-
ators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image
𝜑(𝜕Ω) of a reference set 𝜕Ω and we present some real analyticity results for the dependence upon the
map 𝜑. Then we introduce a perforated domain Ω(𝜖) with a small hole of size 𝜖 and we compute power
series expansions that describe the layer potentials on 𝜕Ω(𝜖) when the parameter 𝜖 approximates the
degenerate value 𝜖 = 0.
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1. Introduction

Potential theory is a valuable tool to analyze boundary value problems for elliptic differential equations and
systems, both to deduce theoretical results and to perform numerical computations. Indeed, layer potentials can
be used to convert boundary value problems into systems of integral equations that are often easier to study than
the original problems. In recent times, potential theoretic techniques have been successfully employed to analyze
boundary value problems on perturbed domains. In view of this application, it is important to understand what
happens to the layer potentials when we perturb the support of integration. In this paper we look at this problem
in the terms of the following question: what is the regularity of the maps that take the perturbation parameters
to the corresponding layer potential operators?

To try to give an answer, we will consider the layer potentials related to the Laplace equation and we will
study two different kind of perturbations, one that we call “regular,” because we don’t have loss of regularity
in the perturbed sets, and one that we call “singular,” because we do have some kind of loss of regularity in
the perturbed sets. More specifically, as an example of a regular perturbation we will have layer potentials
supported on a set 𝜑(𝜕Ω) that is a diffeormorphic image of the boundary 𝜕Ω of a reference set Ω. In this case
the perturbation parameter is the map 𝜑 and our goal is to understand the regularity of the map that takes
𝜑, which we think as an element of a suitable Banach space of functions, to the corresponding layer potential
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operators, which we think as elements of suitable operator spaces. Instead, to make an example of a singular
perturbation, we will analyze layer potentials supported on a set 𝜕Ω(𝜖) with Ω(𝜖) obtained removing from a
fixed domain Ω an interior portion of size 𝜖 > 0. This perturbation is “singular” because for 𝜖 = 0 the set Ω(𝜖)
loses regularity on account of a removed point in its iterior. Also in this second case our goal is to understand the
regularity of the map that takes the perturbation parameter – in this case 𝜖 – to the layer potential operators.
In particular, we will focus on the situation where 𝜖 varies in a neighborhood of zero.

The interest for the regularity of this kind of maps can be motivated by the applications that they have
in the framework of inverse scattering problems (which can be treated with variational or potential theoretic
methods, or with the alternative approach of Kress and Päivärinta [34], see also Haddar and Kress [28] and
Le Louër [46]). For example, in the works [54–56] of Potthast, we may find Fréchet differentiability results for
certain layer potentials related to the Helmholtz equation. Charalambopoulos [5] obtained similar results, but
for the layer potentials related to the elastic scattering problem. In the sense introduced above, the perturbations
considered by Potthast and Charalambopoulos are of regular type: they consider a reference set of class 𝐶2 that
is perturbed into a new set that remains of class 𝐶2. The regularity of the sets allows them to keep the analysis in
the context of Schauder spaces. In [8,9], instead, Costabel and Le Louër opt for the framework of Sobolev spaces
to study the case of electromagnetic boundary integral operators. The family of layer potentials considered by
Costabel and Le Louër is actually quite general and includes the usual boundary integral operators occurring
in time-harmonic potential theory. More recently, Ivanyshyn Yaman and Le Louër [31] used the Piola transform
to simplify the approach of Costabel and Le Louër [8, 9] and Potthast [56].

Now, all the papers listed in the previous paragraph deal with differentiability properties and, indeed, regu-
larity results that go beyond the differentiability seem to be much rarer in literature. There are some examples
though. For instance, Ammari et al. consider a one-parametric regular perturbation and compute in [3] a series
expansion of the single layer potential as a function of the perturbation parameter. Another example is given
by the recent work on the “shape holomorphy” by Henŕıquez and Schwab [30], where the authors consider the
layer potential operators supported on a 𝐶2 Jordan curve in R2. In Henŕıquez and Schwab’s paper a suitable
parametrization of the Jordan curve plays the role of the (regular) perturbation parameter, which they think as
an element in a complex Banach space, and, among other results, they show that the Calderón projector of the
two-dimensional Laplacian is an holomorphic map of such parametrization. The idea of “shape holomorphy”
was previously introduced in the papers by Jerez-Hanckes et al. [32], dedicated to the electromagnetic wave
scattering problem, and by Cohen et al. [6], about the stationary Navier–Stokes equations.

Also the present paper’s goal is to discuss regularity properties beyond the differentiability. More specifically,
our aim is to prove real analyticity results. So, for example, in the first part of the paper, where we consider layer
potentials supported on a diffeomorphic image 𝜑(𝜕Ω) of a reference set 𝜕Ω, we show that the map that takes 𝜑 to
the corresponding layer potential operators is real analytic. The results of this first part are a direct consequence
of the work of Lanza de Cristoforis and Rossi [44, 45] and they can be compared with the holomorphy results
proven by Henŕıquez and Schwab [30]. Indeed, real analytic maps can be extended to holomorphic maps between
reasonable complexifications of the underlying Banach spaces (see, e.g., the monograph of Hàyes and Johanis
[29] and the references therein, see also the paragraph after Cor. 3.3). Although the restriction to the two-
dimensional case might not be essential in Henŕıquez and Schwab paper, we also remark that here we consider
all dimensions 𝑛 ≥ 2.

Probably the first analyticity results of this type were obtained for the Cauchy integral in the paper of
Coifman and Meyer [7] and later by Lanza de Cristoforis and Preciso [43]. The above mentioned papers by
Lanza de Cristoforis and Rossi [44, 45] were dedicated to the layer potentials for the Laplace and Helmholtz
equations and served as a starting point for Lanza de Cristoforis and collaborators to extend this research topic
in many different directions. For example, in Dalla Riva and Lanza de Cristoforis [15] the authors considered
a family of fundamental solutions of second order constant coefficient differential operators and proved that
the corresponding layer potentials depend real analytically jointly on the parametrization of the support, the
density, and the coefficients of the operators. We also mention Dalla Riva [11], where a similar result was
obtained for higher order operators, and Lanza de Cristoforis and Musolino [41], for the case of periodic layer
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potentials. Moreover, analyticity properties of the layer potentials have been exploited by the authors to analyze
the shape dependence of physical quantities arising in fluid mechanics, material sciences, and scattering theory
(see [21,22,47,48]).

So, we might say that, as long as it concerns the problem proposed in this paper, regular perturbations are
the subject of several works. Singular perturbations, instead, are widely studied in relation to boundary value
problems and inverse problems (see, e.g., [1, 2, 49–51], and the references therein), but seem to be less studied
in relation with the regularity of the layer potential operators maps. An exception is the work carried out by
Lanza de Cristoforis and his collaborators with the development of the so called “functional analytic approach”
(see the seminal papers [35–37], see also [20] and the references therein). To illustrate an application of the
functional analytic approach we consider a domain Ω(𝜖) with a hole of size 𝜖. We first show that we can write
the layer potential operators in terms of real analytic maps of 𝜖, which are defined in an open neighborhood of
𝜖 = 0, and of continuous elementary functions of 𝜖, which might be not smooth, or even singular for 𝜖 = 0. Then
we focus on the analytic maps and we show how we can compute explicitly the coefficients of the corresponding
power series expansions. The technique to compute such coefficients is inspired by the work in Dalla Riva et al.
[18], where the computation was carried out in the case of a Dirichlet problem in a domain with a small hole
(we incidentally note that a recent paper [24] by Feppon and Ammari presents a result comparable with that
of [18]).

We observe that the presence of singular functions in the formula for the layer potentials may prevent these
from being analytic functions of 𝜖 around 𝜖 = 0. These specific singular functions are, however, completely
known and in many cases restrictions to the positive values of 𝜖 have analytic continuations also for 𝜖 ≤ 0 (this
is not surprising, one may think, for example, to the function 𝜖 ↦→ |𝜖|). Some consequences of these continuation
properties are studied in the papers by Dalla Riva and Musolino [16,17].

All results of the paper are presented in the framework of Schauder spaces, but we could very well have opted
for Sobolev spaces instead. One reason to choose the Schauder environment is that it appears to be convenient
when we apply our results to problems with nonlinear boundary conditions (as in [38,40]).

In conclusion of this introduction we like to stress that the aim of the paper is that of providing a well-
organized toolbox of instruments for the analysis of perturbed boundary value problems. The reader may find
applications of these instruments in papers by Lanza de Cristoforis (see, e.g., [36, 37, 39]), by the authors,
Rogosin, and Pukhtaievych (see, e.g., [18, 19, 58]) and in the book [20]. From a very general point of view the
main idea in the applications is that, having a boundary value problem transformed into an equivalent system of
integral equations and knowing how the layer potentials depend on the perturbation parameter, we can recover
some information on how the solution of the original boundary value problem depends on the perturbation
parameter. In the conclusion section of the paper we will further comment on this point.

The paper is organized as follows. In Section 2 we introduce some notation, mainly related to layer potentials.
In Section 3 we recall the results of Lanza de Cristoforis and Rossi [44,45] on regular domain perturbations and
we deduce some other analyticity results. We also include a paragraph where we discuss the relation between
real analyticity and holomorphy. In Section 4, we consider singular domain perturbations and, after having
deduced representations in terms of known elementary functions and real analytic maps, we show an explicit
and constructive way to compute all the coefficients of the corresponding power series expansions. Finally, in
Section 5 we give an example of how the results of Section 4 may be applied to a perturbed boundary value
problem and we discuss some future developments.

2. Layer potentials for the Laplace equation

In this section, we introduce the layer potentials (and associated operators) for the Laplace equation. In order
to do so, we fix

𝑛 ∈ N ∖ {0, 1}
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and we take

𝛼 ∈ ]0, 1[ and a bounded open connected subset Ω̃ of R𝑛 of class 𝐶1,𝛼.

For the definition of sets and functions of the Schauder class 𝐶𝑗,𝛼 (𝑗 ∈ N) we refer, e.g., to Gilbarg and
Trudinger [27].

Let 𝐺𝑛 be the function from R𝑛 ∖ {0} to R defined by

𝐺𝑛(𝑥) :=

{︃
− 1

𝑠2
log |𝑥| ∀𝑥 ∈ R𝑛 ∖ {0}, if 𝑛 = 2,

1
(𝑛−2)𝑠𝑛

|𝑥|2−𝑛 ∀𝑥 ∈ R𝑛 ∖ {0}, if 𝑛 ≥ 3,

where 𝑠𝑛 denotes the (𝑛− 1)-dimensional measure of the unit sphere in R𝑛. The function 𝐺𝑛 is well-known to
be a fundamental solution of −∆ := −

∑︀𝑛
𝑗=1 𝜕

2
𝑥𝑗

. For the sake of simplicity, we will sometimes use the notation
𝜕𝑗 := 𝜕𝑥𝑗

.

We now introduce the single layer potential. If 𝜇 ∈ 𝐶0
(︁
𝜕Ω̃
)︁

, we set

𝒮Ω̃[𝜇](𝑥) :=
ˆ

𝜕Ω̃

𝐺𝑛(𝑥− 𝑦)𝜇(𝑦) d𝜎𝑦 ∀𝑥 ∈ R𝑛, (2.1)

where d𝜎 denotes the area element of a (𝑛 − 1)-dimensional manifold imbedded in R𝑛. As is well-known, if
𝜇 ∈ 𝐶0

(︁
𝜕Ω̃
)︁

, then 𝒮Ω̃[𝜇] is continuous in R𝑛. Moreover, if 𝜇 ∈ 𝐶0,𝛼
(︁
𝜕Ω̃
)︁

, then the function 𝒮 int
Ω̃

[𝜇] := 𝒮Ω̃[𝜇]|Ω̃
belongs to 𝐶1,𝛼

(︁
Ω̃
)︁

, and the function 𝒮ext
Ω̃

[𝜇] := 𝒮Ω̃[𝜇]|R𝑛∖Ω̃ belongs to 𝐶1,𝛼
loc

(︁
R𝑛 ∖ Ω̃

)︁
. As usual, 𝐴 denotes the

closure of a set 𝐴.
Similarly, we introduce the double layer potential. If 𝜓 ∈ 𝐶0

(︁
𝜕Ω̃
)︁

, we set

𝒟Ω̃[𝜓](𝑥) := −
ˆ

𝜕Ω̃

𝜈Ω̃(𝑦) · ∇𝐺𝑛(𝑥− 𝑦)𝜓(𝑦) d𝜎𝑦 ∀𝑥 ∈ R𝑛, (2.2)

where 𝜈Ω̃ denotes the outer unit normal to 𝜕Ω̃ and the symbol “·” denotes the scalar product in R𝑛. In the above
definition of the double layer potential 𝒟Ω̃[𝜓], the symbol ∇𝐺𝑛(𝑥 − 𝑦) must be understood as (∇𝐺𝑛)(𝑥 − 𝑦),
and thus

∇𝑦(𝐺𝑛(𝑥− 𝑦)) = −(∇𝐺𝑛)(𝑥− 𝑦) = −∇𝐺𝑛(𝑥− 𝑦).

Incidentally, we note that the function 𝐺𝑛(𝑥− 𝑦) has for 𝑥 = 𝑦 a singularity of order 𝑛− 2 when 𝑛 ≥ 3 and a
logarithmic singularity when 𝑛 = 2. Its gradient ∇𝐺𝑛(𝑥− 𝑦) has a singularity of order 𝑛− 1 for all 𝑛 ≥ 2, but
if Ω̃ is of class 𝐶1,𝛼 and we take 𝑥 and 𝑦 in 𝜕Ω̃, then we can see that the singularity of 𝜈Ω̃(𝑦) · ∇𝐺𝑛(𝑥− 𝑦) is of
order 𝑛− 1−𝛼. As a consequence, the functions in the integrals of (2.1) and (2.2) are integrable in the classical
sense also for 𝑥 ∈ 𝜕Ω̃ and we don’t need to understand the integrals as principle values. For more details we
refer the reader to Sections 4.3 and 4.4 of [20].

As is well known, if 𝜓 ∈ 𝐶1,𝛼
(︁
𝜕Ω̃
)︁

the restriction 𝒟Ω̃[𝜓]|Ω̃ extends to a function 𝒟int
Ω̃

[𝜓] in 𝐶1,𝛼
(︁

Ω̃
)︁

and the

restriction 𝒟Ω̃[𝜓]|R𝑛∖Ω̃ extends to a function 𝒟ext
Ω̃

[𝜓] in 𝐶1,𝛼
loc

(︁
R𝑛 ∖ Ω̃

)︁
. We observe that the symbols 𝒟int

Ω̃
[𝜓] and

𝒟ext
Ω̃

[𝜓] denote the extensions of the restrictions of the double layer potential to the closure of the interior and
of the exterior of Ω̃, respectively.

Next, we introduce two operators associated with the boundary trace of the double layer potential and of the
normal derivative of the single layer potential. Let

𝒦Ω̃[𝜓](𝑥) := −
ˆ

𝜕Ω̃

𝜈Ω̃(𝑦) · ∇𝐺𝑛(𝑥− 𝑦)𝜓(𝑦) d𝜎𝑦 ∀𝑥 ∈ 𝜕Ω̃, (2.3)
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for all 𝜓 ∈ 𝐶1,𝛼
(︁
𝜕Ω̃
)︁

, and

𝒦′
Ω̃

[𝜇](𝑥) :=
ˆ

𝜕Ω̃

𝜈Ω̃(𝑥) · ∇𝐺𝑛(𝑥− 𝑦)𝜇(𝑦) d𝜎𝑦 ∀𝑥 ∈ 𝜕Ω̃, (2.4)

for all 𝜇 ∈ 𝐶0,𝛼
(︁
𝜕Ω̃
)︁

. As it is well-known from classical potential theory, 𝒦Ω̃ is a compact operator from

𝐶1,𝛼
(︁
𝜕Ω̃
)︁

to itself and 𝒦′
Ω̃

is a compact operator from 𝐶0,𝛼
(︁
𝜕Ω̃
)︁

to itself (see [59, 60]). Also, the operators

𝒦Ω̃ and 𝒦′
Ω̃

are adjoint one to the other with respect to the duality on 𝐶1,𝛼
(︁
𝜕Ω̃
)︁
× 𝐶0,𝛼

(︁
𝜕Ω̃
)︁

induced by the

inner product of the Lebesgue space 𝐿2
(︁
𝜕Ω̃
)︁

(cf., e.g., [33], Chap. 4). Moreover, the following jump formulas,
describing the boundary behavior of the layer potentials with the corresponding boundary operators, hold.

𝒟int
Ω̃

[𝜓]|𝜕Ω̃ = −1
2
𝜓 +𝒦Ω̃[𝜓] ∀𝜓 ∈ 𝐶1,𝛼

(︁
𝜕Ω̃
)︁
,

𝒟ext
Ω̃

[𝜓]|𝜕Ω̃ =
1
2
𝜓 +𝒦Ω̃[𝜓] ∀𝜓 ∈ 𝐶1,𝛼

(︁
𝜕Ω̃
)︁
,

𝜈Ω̃ · ∇𝒮
int
Ω̃

[𝜇]|𝜕Ω̃ =
1
2
𝜇+𝒦′

Ω̃
[𝜇] ∀𝜇 ∈ 𝐶0,𝛼

(︁
𝜕Ω̃
)︁
,

𝜈Ω̃ · ∇𝒮
ext
Ω̃

[𝜇]|𝜕Ω̃ = −1
2
𝜇+𝒦′

Ω̃
[𝜇] ∀𝜇 ∈ 𝐶0,𝛼

(︁
𝜕Ω̃
)︁
,

(see, e.g., [26], Chap. 3).
Finally, we also set

𝒱Ω̃[𝜇](𝑥) := 𝒮Ω̃[𝜇](𝑥) ∀𝑥 ∈ 𝜕Ω̃, (2.5)

for all 𝜇 ∈ 𝐶0,𝛼
(︁
𝜕Ω̃
)︁

, and

𝒲Ω̃[𝜓](𝑥) := −𝜈Ω̃(𝑥) · ∇𝒟ext
Ω̃

[𝜓](𝑥) = −𝜈Ω̃(𝑥) · ∇𝒟int
Ω̃

[𝜓](𝑥) ∀𝑥 ∈ 𝜕Ω̃, (2.6)

for all 𝜓 ∈ 𝐶1,𝛼
(︁
𝜕Ω̃
)︁

(see, e.g., [20], Thm. 4.31 (iii)). Clearly, 𝒱Ω̃[𝜇] ∈ 𝐶1,𝛼
(︁
𝜕Ω̃
)︁

for all 𝜇 ∈ 𝐶0,𝛼
(︁
𝜕Ω̃
)︁

and

𝒲Ω̃[𝜓] ∈ 𝐶0,𝛼
(︁
𝜕Ω̃
)︁

for all 𝜓 ∈ 𝐶1,𝛼
(︁
𝜕Ω̃
)︁

.

3. Regular perturbations and shape analyticity

In this section, we consider layer potentials supported on the diffeomorphic image of a reference set. We
show some results of Lanza de Cristoforis and Rossi [44, 45] on the real analyticity of the maps that take the
parametrization to the corresponding layer potentials. From these results we deduce some analyticity results
for the corresponding operators. For the definition and properties of analytic operators, we refer to Prodi and
Ambrosetti [57], p. 89 and to Deimling [23], p. 150. Here we just recall that if 𝒳 , 𝒴 are real Banach spaces, and
if 𝐹 is an operator from an open subset 𝒲 of 𝒳 to 𝒴, then 𝐹 is real analytic in 𝒲 if for every 𝑥0 ∈ 𝒲 there
exist 𝑟 > 0 and continuous symmetric 𝑚-linear operators 𝐴𝑚 from 𝒳𝑚 to 𝒴 such that

∑︀
𝑚≥1 ‖𝐴𝑚‖𝑟𝑚 < ∞

and 𝐹 (𝑥0 + ℎ) = 𝐹 (𝑥0) +
∑︀

𝑚≥1𝐴𝑚(ℎ, . . . , ℎ) for ‖ℎ‖𝒳 ≤ 𝑟.
We now introduce the geometry of the problem. We fix

𝛼 ∈ ]0, 1[ and a bounded open connected subset Ω of R𝑛 of class 𝐶1,𝛼

such that R𝑛 ∖ Ω is connected.
(3.1)

To consider shape perturbations of layer potential operators, we take the set Ω of (3.1) as a reference set.
Then we introduce a specific class 𝒜1,𝛼

𝜕Ω of 𝐶1,𝛼-diffeomorphisms from 𝜕Ω to R𝑛: 𝒜1,𝛼
𝜕Ω is the set of functions of
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Figure 1. The diffeomorphism 𝜑 ∈ 𝒜1,𝛼
𝜕Ω and the 𝜑-dependent sets 𝜑(𝜕Ω), I[𝜑] and E[𝜑].

class 𝐶1,𝛼(𝜕Ω,R𝑛) that are injective and have injective differential at all points of 𝜕Ω. By Lanza de Cristoforis
and Rossi ([45], Lem. 2.2, p. 197) and ([44], Lem. 2.5, p. 143), we can see that 𝒜1,𝛼

𝜕Ω is open in 𝐶1,𝛼(𝜕Ω,R𝑛).
Moreover, for all 𝜑 ∈ 𝒜1,𝛼

𝜕Ω the Jordan-Leray separation theorem ensures that R𝑛 ∖ 𝜑(𝜕Ω) has exactly two open
connected components (see, e.g., [23], Thm. 5.2, p. 26 and [20], Sect. A.4). We denote by I[𝜑] the bounded
connected component of R𝑛 ∖ 𝜑(𝜕Ω) and by E[𝜑] the unbounded one. Then, we have E[𝜑] = R𝑛 ∖ I[𝜑] and
E[𝜑] = R𝑛 ∖ I[𝜑] (see Fig. 1).

We will think at the diffeomorphism 𝜑 as a point in the Banach space 𝐶1,𝛼(𝜕Ω,R𝑛) and we want to see that
the maps that take 𝜑 ∈ 𝒜1,𝛼

𝜕Ω ⊆ 𝐶1,𝛼(𝜕Ω,R𝑛) to the operators 𝒱I[𝜑], 𝒦I[𝜑], 𝒦′I[𝜑], and 𝒲I[𝜑] are, in a sense, real
analytic. We observe, however, that these operators are elements of spaces that depend on 𝜑. For example, 𝒱I[𝜑]

belongs to
ℒ
(︀
𝐶0,𝛼(𝜑(𝜕Ω)), 𝐶1,𝛼(𝜑(𝜕Ω))

)︀
.

So, to have real analytic maps between fixed Banach spaces we “pull-back” the operators to the reference set
𝜕Ω. For example, for a diffeomorphism 𝜑 ∈ 𝒜1,𝛼

𝜕Ω , we denote by 𝒱𝜑 the operator that takes a density function
𝜇 ∈ 𝐶0,𝛼(𝜕Ω) to 𝒱I[𝜑]

[︀
𝜇 ∘ 𝜑(−1)

]︀
∘ 𝜑. Namely, we set

𝒱𝜑[𝜇] := 𝒱I[𝜑]

[︁
𝜇 ∘ 𝜑(−1)

]︁
∘ 𝜑 ∀𝜇 ∈ 𝐶0,𝛼(𝜕Ω).

Then we see that 𝒱𝜑 is an element of the space

ℒ
(︀
𝐶0,𝛼(𝜕Ω), 𝐶1,𝛼(𝜕Ω)

)︀
,

which does not depend on 𝜑, and it makes sense to ask if the map 𝜑 ↦→ 𝒱𝜑 is real analytic. Similarly, we denote
by 𝒦𝜑 the element of ℒ

(︀
𝐶1,𝛼(𝜕Ω), 𝐶1,𝛼(𝜕Ω)

)︀
such that

𝒦𝜑[𝜓] := 𝒦I[𝜑]

[︁
𝜓 ∘ 𝜑(−1)

]︁
∘ 𝜑 ∀𝜓 ∈ 𝐶1,𝛼(𝜕Ω),

we denote by 𝒦′𝜑 the element of ℒ
(︀
𝐶0,𝛼(𝜕Ω), 𝐶0,𝛼(𝜕Ω)

)︀
defined by

𝒦′𝜑[𝜇] := 𝒦′I[𝜑]

[︁
𝜇 ∘ 𝜑(−1)

]︁
∘ 𝜑 ∀𝜇 ∈ 𝐶0,𝛼(𝜕Ω),

and by 𝒲𝜑 the element of ℒ
(︀
𝐶1,𝛼(𝜕Ω), 𝐶0,𝛼(𝜕Ω)

)︀
defined by

𝒲𝜑[𝜓] := 𝒲I[𝜑]

[︁
𝜓 ∘ 𝜑(−1)

]︁
∘ 𝜑 ∀𝜓 ∈ 𝐶1,𝛼(𝜕Ω).

In the following Lemma 3.1 we present some results from Lanza de Cristoforis and Rossi [44, 45].

Lemma 3.1. Let 𝛼, Ω be as in (3.1). Then the following statements hold.

(i) The map from 𝒜1,𝛼
𝜕Ω × 𝐶0,𝛼(𝜕Ω) to 𝐶1,𝛼(𝜕Ω) that takes a pair (𝜑, 𝜇) to the function 𝒱I[𝜑]

[︀
𝜇 ∘ 𝜑(−1)

]︀
∘ 𝜑 is

real analytic.
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(ii) The map from 𝒜1,𝛼
𝜕Ω ×𝐶1,𝛼(𝜕Ω) to 𝐶1,𝛼(𝜕Ω) that takes a pair (𝜑, 𝜓) to the function 𝒦I[𝜑]

[︀
𝜓 ∘ 𝜑(−1)

]︀
∘ 𝜑 is

real analytic.
(iii) The map from 𝒜1,𝛼

𝜕Ω × 𝐶0,𝛼(𝜕Ω) to 𝐶0,𝛼(𝜕Ω) that takes a pair (𝜑, 𝜇) to the function 𝒦′I[𝜑]

[︀
𝜇 ∘ 𝜑(−1)

]︀
∘ 𝜑 is

real analytic.
(iv) The map from 𝒜1,𝛼

𝜕Ω ×𝐶1,𝛼(𝜕Ω) to 𝐶0,𝛼(𝜕Ω) that takes a pair (𝜑, 𝜓) to the function 𝒲I[𝜑]

[︀
𝜓 ∘ 𝜑(−1)

]︀
∘ 𝜑 is

real analytic.

By Lemma 3.1 we deduce the validity of the following theorem, where we show that the operators 𝒱𝜑, 𝒦𝜑,
𝒦′𝜑, and 𝒲𝜑 depend real analytically on 𝜑.

Theorem 3.2. Let 𝛼, Ω be as in (3.1). Then the following statements hold.

(i) The map from 𝒜1,𝛼
𝜕Ω to ℒ

(︀
𝐶0,𝛼(𝜕Ω), 𝐶1,𝛼(𝜕Ω)

)︀
that takes 𝜑 to 𝒱𝜑 is real analytic.

(ii) The map from 𝒜1,𝛼
𝜕Ω to ℒ

(︀
𝐶1,𝛼(𝜕Ω), 𝐶1,𝛼(𝜕Ω)

)︀
that takes 𝜑 to 𝒦𝜑 is real analytic.

(iii) The map from 𝒜1,𝛼
𝜕Ω to ℒ

(︀
𝐶0,𝛼(𝜕Ω), 𝐶0,𝛼(𝜕Ω)

)︀
that takes 𝜑 to 𝒦′𝜑 is real analytic.

(iv) The map from 𝒜1,𝛼
𝜕Ω to ℒ

(︀
𝐶1,𝛼(𝜕Ω), 𝐶0,𝛼(𝜕Ω)

)︀
that takes 𝜑 to 𝒲𝜑 is real analytic.

Proof. We prove only statement (i). The proof of statements (ii)–(iv) can be effected similarly and is accordingly
left to the reader. By Lemma 3.1 the map

𝒜1,𝛼
𝜕Ω × 𝐶0,𝛼(𝜕Ω) ∋ (𝜑, 𝜇) ↦→ 𝒱♯(𝜑, 𝜇) := 𝒱I[𝜑]

[︁
𝜇 ∘ 𝜑(−1)

]︁
∘ 𝜑 ∈ 𝐶1,𝛼(𝜕Ω)

is real analytic. Since 𝒱♯ is linear and continuous with respect to the variable 𝜇, we have

𝒱𝜑♯ = 𝑑𝜇𝒱♯(𝜑♯, 𝜇♯) ∀(𝜑♯, 𝜇♯) ∈ 𝒜1,𝛼
𝜕Ω × 𝐶0,𝛼(𝜕Ω).

Since the right-hand side equals a partial Fréchet differential of a map which is real analytic by Lemma 3.1 (i),
the right-hand side is analytic on (𝜑♯, 𝜇♯). Hence (𝜑♯, 𝜇♯) ↦→ 𝒱𝜑♯ is real analytic on 𝒜1,𝛼

𝜕Ω × 𝐶0,𝛼(𝜕Ω) and, since
it does not depend on 𝜇♯, we conclude that it is real analytic on 𝒜1,𝛼

𝜕Ω . �

Theorem 3.2 is a direct consequence of Lemma 3.1 in Lanza de Cristoforis and Rossi [44], but the new
formulation has some advantages. For example, we can now recover from a different perspective the result of
Henŕıquez and Schwab [30] on the shape holomorphy of the Calderón projector, and actually we can extend it
from the 2-dimensional case to any dimension 𝑛 ≥ 2. So, as in Henŕıquez and Schwab [30], we now introduce
the element 𝒞𝜑 of ℒ(𝐶1,𝛼(𝜕Ω)× 𝐶0,𝛼(𝜕Ω), 𝐶1,𝛼(𝜕Ω)× 𝐶0,𝛼(𝜕Ω)) defined by

𝒞𝜑 :=
(︂

1
2𝐼 −𝒦𝜑 𝒱𝜑

𝒲𝜑
1
2𝐼 +𝒦′𝜑

)︂
for all 𝜑 ∈ 𝒜1,𝛼

𝜕Ω . In other words, if 𝜑 ∈ 𝒜1,𝛼
𝜕Ω and (𝜓, 𝜇) ∈ 𝐶1,𝛼(𝜕Ω)× 𝐶0,𝛼(𝜕Ω), then

𝒞𝜑[𝜓, 𝜇] =

(︃
1
2
𝜓 −𝒦𝜑[𝜓] + 𝒱𝜑[𝜇],𝒲𝜑[𝜓] +

1
2
𝜇+𝒦′𝜑[𝜇]

)︃
.

The operator 𝒞𝜑 is called Calderón projector. By Theorem 3.2, we immediately deduce the validity of the
following corollary, where we show that the map that takes 𝜑 to 𝒞𝜑 is real analytic (for the case of arbitrary
dimension 𝑛 ≥ 2).

Corollary 3.3. Let 𝛼, Ω be as in (3.1). Then the map acting from the space 𝒜1,𝛼
𝜕Ω to ℒ(𝐶1,𝛼(𝜕Ω) ×

𝐶0,𝛼(𝜕Ω), 𝐶1,𝛼(𝜕Ω)× 𝐶0,𝛼(𝜕Ω)) that takes 𝜑 to the bounded linear operator 𝒞𝜑 is real analytic.
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We can now see that the map 𝜑 ↦→ 𝒞𝜑 has a holomorphic extension. Indeed, it is well known that for a real
vector space 𝑋 we can consider the complexified vector space ̃︀𝑋 = 𝑋 + 𝑖𝑋 with the operations

(𝑥+ 𝑖𝑦) + (𝑢+ 𝑖𝑣) = (𝑥+ 𝑢) + 𝑖(𝑦 + 𝑣)

and
(𝑎+ 𝑖𝑏)(𝑥+ 𝑖𝑦) = (𝑎𝑥− 𝑏𝑦) + 𝑖(𝑏𝑥+ 𝑎𝑦)

for all 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑋 and 𝑎, 𝑏 ∈ R. If in addition 𝑋 is a normed space, with norm denoted by ‖ · ‖𝑋 , then we
might want to equip ̃︀𝑋 with a norm as well. How to define a norm on ̃︀𝑋 is not, however, a trivial task. We can
see, for example, that the function

𝑛(𝑥+ 𝑖𝑦) =
√︁
‖𝑥‖2𝑋 + ‖𝑦‖2𝑋

is a norm on ̃︀𝑋 only when the norm of 𝑋 comes from an inner product (we can verify that if 𝑛(·) is positive
homogeneous, then ‖ · ‖𝑋 has the parallelogram property). In [61] Taylor proposed to consider the function

‖𝑥+ 𝑖𝑦‖ ̃︀𝑋 = sup
Φ∈B𝑋*

√︀
Φ(𝑥)2 + Φ(𝑦)2, (3.2)

where B𝑋* is the closed unit ball in 𝑋* := ℒ(𝑋,R) (see also [52]). We can verify that ‖ · ‖ ̃︀𝑋 is a norm on �̃�

and that ̃︀𝑋 with the norm ‖ · ‖ ̃︀𝑋 is complete as soon as 𝑋 is complete. We can also see that the norm in (3.2)
can be written as

‖𝑥+ 𝑖𝑦‖ ̃︀𝑋 = sup
𝑡∈[0,2𝜋]

‖(cos 𝑡)𝑥+ (sin 𝑡)𝑦‖𝑋

(cf., [53], Eq. (1)). In addition, every reasonable norm ‖ · ‖′̃︀𝑋 on ̃︀𝑋 that satisfies the conditions

‖𝑥‖′̃︀𝑋 = ‖𝑥‖𝑋 ∀𝑥 ∈ 𝑋

and
‖𝑥+ 𝑖𝑦‖′̃︀𝑋 = ‖𝑥− 𝑖𝑦‖′̃︀𝑋 ∀𝑥, 𝑦 ∈ 𝑋

is equivalent to ‖ · ‖ ̃︀𝑋 (cf., [53], Prop. 3).
For what concerns this paper, we deduce that 𝐶1,𝛼(𝜕Ω,C) (the space of 𝐶1,𝛼 complex valued functions on

𝜕Ω) coincides algebraically with the complexified space ˜𝐶1,𝛼(𝜕Ω) and the standard norm on 𝐶1,𝛼(𝜕Ω,C), which
is reasonable in the sense introduced above, is equivalent to the norm defined by (3.2). Similarly, we have

˜𝐶1,𝛼(𝜕Ω,R𝑛) = 𝐶1,𝛼(𝜕Ω,C𝑛)

algebraically and with equivalent norms, and the complexification of the real Banach space
ℒ
(︀
𝐶1,𝛼(𝜕Ω)× 𝐶0,𝛼(𝜕Ω), 𝐶1,𝛼(𝜕Ω)× 𝐶0,𝛼(𝜕Ω)

)︀
coincides algebraically with

ℒ
(︀
𝐶1,𝛼(𝜕Ω,C)× 𝐶0,𝛼(𝜕Ω,C), 𝐶1,𝛼(𝜕Ω,C)× 𝐶0,𝛼(𝜕Ω,C)

)︀
and has an equivalent norm.

Then, from Corollary 3.3 and from Hájek and Johanis ([29], Thm. 171, p. 75) (see also [4], Thm. 5) we readily
deduce the following result on the shape holomorphy of the Calderón projector.

Corollary 3.4. Let 𝛼, Ω be as in (3.1). There exist an open subset ̃︀𝒜1,𝛼
𝜕Ω of 𝐶1,𝛼(𝜕Ω,C𝑛) such that 𝒜1,𝛼

𝜕Ω =̃︀𝒜1,𝛼
𝜕Ω ∩𝐶1,𝛼(𝜕Ω,R𝑛) (that is, 𝒜1,𝛼

𝜕Ω is the subset of the real valued functions of ̃︀𝒜1,𝛼
𝜕Ω ) and a holomorphic map ̃︀𝒞

from ̃︀𝒜1,𝛼
𝜕Ω to

ℒ
(︀
𝐶1,𝛼(𝜕Ω,C)× 𝐶0,𝛼(𝜕Ω,C), 𝐶1,𝛼(𝜕Ω,C)× 𝐶0,𝛼(𝜕Ω,C)

)︀
such that ̃︀𝒞[𝜑] = 𝒞𝜑 for all 𝜑 ∈ 𝒜1,𝛼

𝜕Ω .
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Figure 2. The perforated set Ω(𝜖) and the limiting punctured set Ω𝑜 ∖ {0}.

4. Singular perturbations

In this section we consider the effect of a singular perturbation produced by a small perforation in the domain
that is bounded by the support of integration.

We fix

𝛼 ∈ ]0, 1[ and two bounded open connected subsets Ω𝑜, Ω𝑖 of R𝑛 of class 𝐶1,𝛼,

such that their exteriors R𝑛 ∖ Ω𝑜 and R𝑛 ∖ Ω𝑖 are connected,
and the origin 0 of R𝑛 belongs both to Ω𝑜 and to Ω𝑖.

(4.1)

Here the superscript “𝑜” stands for “outer domain” and the superscript “𝑖” stands for “inner domain.” We take

𝜖0 := sup
{︁
𝜃 ∈ ]0,+∞[ : 𝜖Ω𝑖 ⊆ Ω𝑜, ∀𝜖 ∈ ]−𝜃, 𝜃[

}︁
, (4.2)

and we define the perforated domain Ω(𝜖) by setting

Ω(𝜖) := Ω𝑜 ∖ 𝜖Ω𝑖

for all 𝜖 ∈ ]−𝜖0, 𝜖0[. Clearly, when 𝜖 tends to zero, the set Ω(𝜖) degenerates to the punctured domain Ω𝑜 ∖ {0}
(see Fig. 2).

We observe that the regularity of the set Ω was playing a crucial role when dealing with the regular pertur-
bations of Section 3, but not here. Here, we could very well relax the conditions on Ω𝑖 and Ω𝑜 and take two
Lipschitz domains instead. If that was our choice, we should consider integral operators in the framework of
Sobolev spaces instead of Schauder spaces (as in [10]). For the sake of simplicity in the presentation, we prefer
to keep working with domains of class 𝐶1,𝛼 and with Schauder spaces.

4.1. The operator 𝒱Ω(𝜖)

Our aim is to study the maps that take 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0} to the operators 𝒱Ω(𝜖), 𝒦Ω(𝜖), 𝒦′Ω(𝜖), and 𝒲Ω(𝜖).
We see, however, that these operators are defined on spaces that depend on the parameter 𝜖. For example, for
every fixed 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0} the operator 𝒱Ω(𝜖) is an element of ℒ(𝐶0,𝛼(𝜕Ω(𝜖)), 𝐶1,𝛼(𝜕Ω(𝜖))) (we remind that
𝒱Ω(𝜖) is the restriction of the single layer to the boundary of Ω(𝜖), see definition (2.5)). Then, to describe the
dependence of 𝒱Ω(𝜖) upon 𝜖 we “pull-back” the operator to the boundary of the fixed domains 𝜕Ω𝑜 and 𝜕Ω𝑖.
That is, we define

𝒱𝑜
𝜖

[︀
𝜃𝑜, 𝜃𝑖

]︀
(𝑥) := 𝒱Ω(𝜖)[𝜇𝜖](𝑥) ∀𝑥 ∈ 𝜕Ω𝑜,

𝒱𝑖
𝜖

[︀
𝜃𝑜, 𝜃𝑖

]︀
(𝑡) := 𝒱Ω(𝜖)[𝜇𝜖](𝜖𝑡) ∀𝑡 ∈ 𝜕Ω𝑖,

with

𝜇𝜖(𝑥) :=
{︂
𝜃𝑜(𝑥) if 𝑥 ∈ 𝜕Ω𝑜,
𝜃𝑖(𝑥/𝜖) if 𝑥 ∈ 𝜕

(︀
𝜖Ω𝑖
)︀
,

(4.3)
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for all
(︀
𝜃𝑜, 𝜃𝑖

)︀
∈ 𝐶0,𝛼(𝜕Ω𝑜) × 𝐶0,𝛼

(︀
𝜕Ω𝑖

)︀
. So, in a sense, we identify functions of 𝐶0,𝛼(𝜕Ω(𝜖)) and 𝐶1,𝛼(𝜕Ω(𝜖))

with elements in the product spaces 𝐶0,𝛼(𝜕Ω𝑜)×𝐶0,𝛼(𝜕Ω𝑖) and 𝐶1,𝛼(𝜕Ω𝑜)×𝐶1,𝛼(𝜕Ω𝑖), respectively. Then we
set

𝒱𝜖 :=
(︀
𝒱𝑜

𝜖 ,𝒱𝑖
𝜖

)︀
and we observe that, for every 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}, the operator 𝒱𝜖 is an element of a space that does not depend
on 𝜖, namely

𝒱𝜖 ∈ ℒ
(︀
𝐶0,𝛼(𝜕Ω𝑜)× 𝐶0,𝛼

(︀
𝜕Ω𝑖

)︀
, 𝐶1,𝛼(𝜕Ω𝑜)× 𝐶1,𝛼

(︀
𝜕Ω𝑖

)︀)︀
.

In the following Theorem 4.1 we describe 𝒱𝜖 as a matrix operator with entries written in terms of analytic
maps and elementary functions of 𝜖. As we shall see, the proof of Theorem 4.1 exploits certain real analyticity
results for integral operators with real analytic kernels (cf., [42]) and computations based on the Taylor series
expansion of the kernel. In what follows we will often use the equality

𝜕𝑘
𝜖 (𝐹 (𝜖𝑥)) =

∑︁
𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
𝑥𝛽
(︀
𝐷𝛽𝐹

)︀
(𝜖𝑥), (4.4)

which holds for all 𝑘 ∈ N, 𝜖 ∈ R, 𝑥 ∈ R𝑛, and for all functions 𝐹 analytic in a neighborhood of 𝜖𝑥. Here, if
𝛽 ∈ N𝑛, then (𝐷𝛽𝐹 )(𝑦) denotes the partial derivative of multi-index 𝛽 of the function 𝐹 evaluated at 𝑦 ∈ R𝑛.

Theorem 4.1. Let 𝛼, Ω𝑜, Ω𝑖 be as in (4.1). Let 𝜖0 be as in (4.2). There exist real analytic maps

]−𝜖0, 𝜖0[ → ℒ(𝐶0,𝛼(𝜕Ω𝑖), 𝐶1,𝛼(𝜕Ω𝑜))
𝜖 ↦→ 𝒱𝑜,𝑖

𝜖

and
]−𝜖0, 𝜖0[ → ℒ(𝐶0,𝛼(𝜕Ω𝑜), 𝐶1,𝛼(𝜕Ω𝑖))

𝜖 ↦→ 𝒱𝑖,𝑜
𝜖

such that

𝒱𝜖 =

(︃
𝒱Ω𝑜 |𝜖|𝑛−1𝒱𝑜,𝑖

𝜖

𝒱𝑖,𝑜
𝜖 |𝜖| 𝒱Ω𝑖 − 𝛿2,𝑛

|𝜖| log |𝜖|
2𝜋 Int𝜕Ω𝑖

)︃
(4.5)

for all 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}, where

Int𝜕Ω𝑖 [𝜃𝑖] :=
ˆ

𝜕Ω𝑖

𝜃𝑖 d𝜎 ∀𝜃𝑖 ∈ 𝐶0,𝛼(𝜕Ω𝑖).

Moreover, the following statements hold.

(i) The coefficients 𝒱𝑜,𝑖
(𝑘) of the power series expansion 𝒱𝑜,𝑖

𝜖 =
∑︀∞

𝑘=0 𝜖
𝑘𝒱𝑜,𝑖

(𝑘) with 𝜖 in a neighborhood of 0 are
given by

𝒱𝑜,𝑖
(𝑘)[𝜃

𝑖](𝑥) := (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

1
𝛽!
(︀
𝐷𝛽𝐺𝑛

)︀
(𝑥)
ˆ

𝜕Ω𝑖

𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑘 ∈ N, 𝑥 ∈ 𝜕Ω𝑜, and 𝜃𝑖 ∈ 𝐶0,𝛼(𝜕Ω𝑖).
(ii) The coefficients 𝒱𝑖,𝑜

(𝑘) of the power series expansion 𝒱𝑖,𝑜
𝜖 =

∑︀∞
𝑘=0 𝜖

𝑘𝒱𝑖,𝑜
(𝑘) with 𝜖 in a neighborhood of 0 are

given by

𝒱𝑖,𝑜
(𝑘)[𝜃

𝑜](𝑡) := (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

1
𝛽!
𝑡𝛽
ˆ

𝜕Ω𝑜

(︀
𝐷𝛽𝐺𝑛

)︀
(𝑦)𝜃𝑜(𝑦) d𝜎𝑦

for all 𝑘 ∈ N, 𝑡 ∈ 𝜕Ω𝑖, and 𝜃𝑜 ∈ 𝐶0,𝛼(𝜕Ω𝑜).
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Proof. Let (𝜃𝑜, 𝜃𝑖) ∈ 𝐶0,𝛼(𝜕Ω𝑜) × 𝐶0,𝛼(𝜕Ω𝑖), 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}. By a computation based on the theorem of
change of variable in integrals we have

𝒱𝑜
𝜖 [𝜃𝑜, 𝜃𝑖](𝑥) =

ˆ
𝜕Ω𝑜

𝐺𝑛(𝑥− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 + |𝜖|𝑛−1

ˆ
𝜕Ω𝑖

𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

= 𝒱Ω𝑜 [𝜃𝑜](𝑥) + |𝜖|𝑛−1

ˆ
𝜕Ω𝑖

𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑥 ∈ 𝜕Ω𝑜. Similarly, we can compute that

𝒱𝑖
𝜖[𝜃𝑜, 𝜃𝑖](𝑡) =

ˆ
𝜕Ω𝑜

𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 + |𝜖|
ˆ

𝜕Ω𝑖

𝐺𝑛(𝑡− 𝑠)𝜃𝑖(𝑠) d𝜎𝑠 − 𝛿2,𝑛
|𝜖| log |𝜖|

2𝜋

ˆ
𝜕Ω𝑖

𝜃𝑖(𝑠) d𝜎𝑠

=
ˆ

𝜕Ω𝑜

𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 + |𝜖| 𝒱Ω𝑖 [𝜃𝑖](𝑡)− 𝛿2,𝑛
|𝜖| log |𝜖|

2𝜋

ˆ
𝜕Ω𝑖

𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑡 ∈ 𝜕Ω𝑖, where we have also used the equality

𝐺𝑛(𝜖𝜉) = |𝜖|2−𝑛𝐺𝑛(𝜉)− 𝛿2,𝑛
1

2𝜋
log |𝜖| ∀𝜉 ∈ R𝑛 ∖ {0}, ∀𝜖 ̸= 0.

Then equality (4.5) holds with

𝒱𝑜,𝑖
𝜖 [𝜃𝑖](𝑥) :=

ˆ
𝜕Ω𝑖

𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠 ∀𝜃𝑖 ∈ 𝐶0,𝛼(𝜕Ω𝑖), ∀𝑥 ∈ 𝜕Ω𝑜

and

𝒱𝑖,𝑜
𝜖 [𝜃𝑜](𝑡) :=

ˆ
𝜕Ω𝑜

𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 ∀𝜃𝑜 ∈ 𝐶0,𝛼(𝜕Ω𝑜), ∀𝑡 ∈ 𝜕Ω𝑖.

By the regularity results for the integral operators with real analytic kernel of [42] and by the same argument
we have used in the proof of Theorem 3.2, we can see that the maps 𝜖 ↦→ 𝒱𝑜,𝑖

𝜖 and 𝜖 ↦→ 𝒱𝑖,𝑜
𝜖 are real analytic

from ]−𝜖0, 𝜖0[ to ℒ(𝐶0,𝛼(𝜕Ω𝑖), 𝐶1,𝛼(𝜕Ω𝑜)) and from ]−𝜖0, 𝜖0[ to ℒ(𝐶0,𝛼(𝜕Ω𝑜), 𝐶1,𝛼(𝜕Ω𝑖)), respectively.
Then we can locally express 𝜖 ↦→ 𝒱𝑜,𝑖

𝜖 with its Taylor series. In particular, we have

𝒱𝑜,𝑖
𝜖 =

∞∑︁
𝑘=0

𝜖𝑘
1
𝑘!
(︀
𝜕𝑘

𝜖 𝒱𝑜,𝑖
𝜖

)︀
|𝜖=0

for 𝜖 in a neighborhood of 0 and we can prove statement (i) computing the derivatives
(︀
𝜕𝑘

𝜖 𝒱𝑜,𝑖
𝜖

)︀
|𝜖=0

. With the
help of equation (4.4) we can see that

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑖

𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂
= (−1)𝑘

∑︁
𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑖

𝑠𝛽
(︀
𝐷𝛽𝐺𝑛

)︀
(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠.

Accordingly

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑖

𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂
|𝜖=0

= (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
(︀
𝐷𝛽𝐺𝑛

)︀
(𝑥)
ˆ

𝜕Ω𝑖

𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠,

and statement (i) follows.
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Similarly, to verify statement (ii) we have to compute the derivatives
(︀
𝜕𝑘

𝜖 𝒱𝑖,𝑜
𝜖

)︀
|𝜖=0

. Again, with the help of
(4.4) we see that

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑜

𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂
=
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑜

𝑡𝛽
(︀
𝐷𝛽𝐺𝑛

)︀
(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦,

accordingly

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑜

𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂
|𝜖=0

=
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
𝑡𝛽
ˆ

𝜕Ω𝑜

(︀
𝐷𝛽𝐺𝑛

)︀
(−𝑦)𝜃𝑜(𝑦) d𝜎𝑦

= (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
𝑡𝛽
ˆ

𝜕Ω𝑜

(︀
𝐷𝛽𝐺𝑛

)︀
(𝑦)𝜃𝑜(𝑦) d𝜎𝑦,

and statement (ii) follows. �

4.2. The operator 𝒦Ω(𝜖)

We proceed with the boundary operator 𝒦Ω(𝜖), which is the restriction of the double layer potential to the
boundary of Ω(𝜖) (see definition (2.3)). In a way that resembles what we did above for the single layer potential,
we set

𝒦𝑜
𝜖

[︀
𝜃𝑜, 𝜃𝑖

]︀
(𝑥) := 𝒦Ω(𝜖)[𝜓𝜖](𝑥) ∀𝑥 ∈ 𝜕Ω𝑜,

𝒦𝑖
𝜖

[︀
𝜃𝑜, 𝜃𝑖

]︀
(𝑡) := 𝒦Ω(𝜖)[𝜓𝜖](𝜖𝑡) ∀𝑡 ∈ 𝜕Ω𝑖,

for all 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0} and (𝜃𝑜, 𝜃𝑖) ∈ 𝐶1,𝛼(𝜕Ω𝑜)× 𝐶1,𝛼(𝜕Ω𝑖), where

𝜓𝜖(𝑥) :=
{︂
𝜃𝑜(𝑥) if 𝑥 ∈ 𝜕Ω𝑜,

𝜃𝑖(𝑥/𝜖) if 𝑥 ∈ 𝜕(𝜖Ω𝑖).
(4.6)

Then we denote by 𝒦𝜖 the element of ℒ(𝐶1,𝛼(𝜕Ω𝑜)× 𝐶1,𝛼(𝜕Ω𝑖), 𝐶1,𝛼(𝜕Ω𝑜)× 𝐶1,𝛼(𝜕Ω𝑖)) defined by

𝒦𝜖 := (𝒦𝑜
𝜖 ,𝒦𝑖

𝜖) ∀𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}.

We have the following.

Theorem 4.2. Let 𝛼, Ω𝑜, Ω𝑖 be as in (4.1). Let 𝜖0 be as in (4.2). There exist real analytic maps

]−𝜖0, 𝜖0[ → ℒ
(︀
𝐶1,𝛼

(︀
𝜕Ω𝑖

)︀
, 𝐶1,𝛼(𝜕Ω𝑜)

)︀
𝜖 ↦→ 𝒦𝑜,𝑖

𝜖

and
]−𝜖0, 𝜖0[ → ℒ

(︀
𝐶1,𝛼(𝜕Ω𝑜), 𝐶1,𝛼

(︀
𝜕Ω𝑖

)︀)︀
𝜖 ↦→ 𝒦𝑖,𝑜

𝜖

such that

𝒦𝜖 =
(︂
𝒦Ω𝑜 𝜖|𝜖|𝑛−2𝒦𝑜,𝑖

𝜖

𝒦𝑖,𝑜
𝜖 −𝒦Ω𝑖

)︂
(4.7)

for all 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}. Moreover, the following statements hold.
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(i) The coefficients 𝒦𝑜,𝑖
(𝑘) of the power series expansion 𝒦𝑜,𝑖

𝜖 =
∑︀∞

𝑘=0 𝜖
𝑘𝒦𝑜,𝑖

(𝑘) with 𝜖 in a neighborhood of 0 are
given by

𝒦𝑜,𝑖
(𝑘)[𝜃

𝑖](𝑥) := (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

1
𝛽!
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑥) ·

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠)𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑘 ∈ N, 𝑥 ∈ 𝜕Ω𝑜, and 𝜃𝑖 ∈ 𝐶1,𝛼(𝜕Ω𝑖).
(ii) The coefficients 𝒦𝑖,𝑜

(𝑘) of the power series expansion 𝒦𝑖,𝑜
𝜖 =

∑︀∞
𝑘=0 𝜖

𝑘𝒦𝑖,𝑜
(𝑘) with 𝜖 in a neighborhood of 0 are

given by

𝒦𝑖,𝑜
(𝑘)[𝜃

𝑜](𝑡) := (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

1
𝛽!
𝑡𝛽
ˆ

𝜕Ω𝑜

𝜈Ω𝑜(𝑦) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑦)𝜃𝑜(𝑦) d𝜎𝑦

for all 𝑘 ∈ N, 𝑡 ∈ 𝜕Ω𝑖, and 𝜃𝑜 ∈ 𝐶1,𝛼(𝜕Ω𝑜).

Proof. Let (𝜃𝑜, 𝜃𝑖) ∈ 𝐶1,𝛼(𝜕Ω𝑜)×𝐶1,𝛼(𝜕Ω𝑖), 𝜖 ∈ ]−𝜖0, 𝜖0[∖{0}. By the theorem of change of variables in integrals
and equality

𝜈𝜖Ω𝑖(𝜖𝑠) = sgn(𝜖)𝜈Ω𝑖(𝑠) ∀𝑠 ∈ 𝜕Ω𝑖,

we can see that

𝒦𝑜
𝜖 [𝜃𝑜, 𝜃𝑖](𝑥) = 𝒦Ω𝑜 [𝜃𝑜](𝑥) + |𝜖|𝑛−1sgn(𝜖)

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

= 𝒦Ω𝑜 [𝜃𝑜](𝑥) + 𝜖|𝜖|𝑛−2

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑥 ∈ 𝜕Ω𝑜. Moreover, by equality

∇𝐺𝑛(𝜖𝜂) = sgn(𝜖)|𝜖|1−𝑛∇𝐺𝑛(𝜂) ∀𝜖 ∈ R ∖ {0}, ∀𝜂 ∈ R𝑛 ∖ {0},

we can compute that

𝒦𝑖
𝜖[𝜃

𝑜, 𝜃𝑖](𝑡) = −
ˆ

𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 −𝒦Ω𝑖 [𝜃𝑖](𝑡) ∀𝑡 ∈ 𝜕Ω𝑖.

Then equality (4.7) holds with

𝒦𝑜,𝑖
𝜖 [𝜃𝑖](𝑥) :=

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠 ∀𝜃𝑖 ∈ 𝐶1,𝛼(𝜕Ω𝑖), ∀𝑥 ∈ 𝜕Ω𝑜

and
𝒦𝑖,𝑜

𝜖 [𝜃𝑜](𝑡) := −
ˆ

𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 ∀𝜃𝑜 ∈ 𝐶1,𝛼(𝜕Ω𝑜), ∀𝑡 ∈ 𝜕Ω𝑖.

By the regularity results for the integral operators with real analytic kernel of [42] and by the same argument
we have used in the proof of Theorem 3.2, we can see that the maps 𝜖 ↦→ 𝒦𝑜,𝑖

𝜖 and 𝜖 ↦→ 𝒦𝑖,𝑜
𝜖 are real analytic

from ]−𝜖0, 𝜖0[ to ℒ(𝐶1,𝛼(𝜕Ω𝑖), 𝐶1,𝛼(𝜕Ω𝑜)) and from ]−𝜖0, 𝜖0[ to ℒ(𝐶1,𝛼(𝜕Ω𝑜), 𝐶1,𝛼(𝜕Ω𝑖)), respectively.
Then we can locally express 𝜖 ↦→ 𝒦𝑜,𝑖

𝜖 with its Taylor series. In particular, we have

𝒦𝑜,𝑖
𝜖 =

∞∑︁
𝑘=0

𝜖𝑘
1
𝑘!

(𝜕𝑘
𝜖𝒦𝑜,𝑖

𝜖 )|𝜖=0

for 𝜖 in a neighborhood of 0 and we can prove statement (i) computing the derivatives (𝜕𝑘
𝜖𝒦𝑜,𝑖

𝜖 )|𝜖=0. With the
help of equation (4.4) we can see that

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂
= (−1)𝑘

∑︁
𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑥− 𝜖𝑠)𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠,
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and accordingly

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂
|𝜖=0

= (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑥) ·

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠)𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠

and statement (i) follows.
Similarly, to verify statement (ii) we have to compute the derivatives (𝜕𝑘

𝜖𝒦𝑖,𝑜
𝜖 )|𝜖=0. Again, with the help of

(4.4) we see that

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂
=
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝜖𝑡− 𝑦)𝑡𝛽𝜃𝑜(𝑦) d𝜎𝑦,

and accordingly

𝜕𝑘
𝜖

(︂
−
ˆ

𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂
|𝜖=0

= −
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(−𝑦)𝑡𝛽𝜃𝑜(𝑦) d𝜎𝑦

= (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
𝑡𝛽
ˆ

𝜕Ω𝑜

𝜈Ω𝑜(𝑦) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑦)𝜃𝑜(𝑦) d𝜎𝑦

and statement (ii) follows. �

4.3. The operator 𝒦′Ω(𝜖)

We now turn to 𝒦′Ω(𝜖), the boundary operator related with the normal derivative of the single layer potential
(see definition (2.4)). We set

𝒦′𝑜𝜖 [𝜃𝑜, 𝜃𝑖](𝑥) := 𝒦′Ω(𝜖)[𝜇𝜖](𝑥) ∀𝑥 ∈ 𝜕Ω𝑜,

𝒦′𝑖𝜖 [𝜃𝑜, 𝜃𝑖](𝑡) := 𝒦′Ω(𝜖)[𝜇𝜖](𝜖𝑡) ∀𝑡 ∈ 𝜕Ω𝑖,

for all 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0} and (𝜃𝑜, 𝜃𝑖) ∈ 𝐶0,𝛼(𝜕Ω𝑜)× 𝐶0,𝛼(𝜕Ω𝑖), with 𝜇𝜖 as in (4.3). Then we define

𝒦′𝜖 :=
(︀
𝒦′𝑜𝜖 ,𝒦′𝑖𝜖

)︀
∀𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}

and we note that 𝒦′𝜖 is an element of ℒ(𝐶0,𝛼(𝜕Ω𝑜) × 𝐶0,𝛼(𝜕Ω𝑖), 𝐶0,𝛼(𝜕Ω𝑜) × 𝐶0,𝛼(𝜕Ω𝑖)). We can prove the
following.

Theorem 4.3. Let 𝛼, Ω𝑜, Ω𝑖 be as in (4.1). Let 𝜖0 be as in (4.2). There exist real analytic maps

]−𝜖0, 𝜖0[ → ℒ(𝐶0,𝛼(𝜕Ω𝑖), 𝐶0,𝛼(𝜕Ω𝑜))
𝜖 ↦→ 𝒦′𝑜,𝑖

𝜖

and
]−𝜖0, 𝜖0[ → ℒ(𝐶0,𝛼(𝜕Ω𝑜), 𝐶0,𝛼(𝜕Ω𝑖))

𝜖 ↦→ 𝒦′𝑖,𝑜𝜖

such that

𝒦′𝜖 =
(︂𝒦′Ω𝑜 |𝜖|𝑛−1𝒦′𝑜,𝑖

𝜖

sgn(𝜖)𝒦′𝑖,𝑜𝜖 −𝒦′Ω𝑖

)︂
(4.8)

for all 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}. Moreover, the following statements hold.
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(i) The coefficients 𝒦′𝑜,𝑖
(𝑘) of the power series expansion 𝒦′𝑜,𝑖

𝜖 =
∑︀∞

𝑘=0 𝜖
𝑘𝒦′𝑜,𝑖

(𝑘) with 𝜖 in a neighborhood of 0 are
given by

𝒦′𝑜,𝑖
(𝑘) [𝜃𝑖](𝑥) := (−1)𝑘

∑︁
𝛽∈N𝑛

|𝛽|=𝑘

1
𝛽!
𝜈Ω𝑜(𝑥) ·

(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑥)
ˆ

𝜕Ω𝑖

𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑘 ∈ N, 𝑥 ∈ 𝜕Ω𝑜, and 𝜃𝑖 ∈ 𝐶0,𝛼(𝜕Ω𝑖).
(ii) The coefficients 𝒦′𝑖,𝑜(𝑘) of the power series expansion 𝒦′𝑖,𝑜𝜖 =

∑︀∞
𝑘=0 𝜖

𝑘𝒦′𝑖,𝑜(𝑘) with 𝜖 in a neighborhood of 0 are
given by

𝒦′𝑖,𝑜(𝑘) [𝜃𝑜](𝑡) := (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

1
𝛽!
𝑡𝛽𝜈Ω𝑖(𝑡) ·

ˆ
𝜕Ω𝑜

(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑦)𝜃𝑜(𝑦) d𝜎𝑦

for all 𝑘 ∈ N, 𝑡 ∈ 𝜕Ω𝑖, and 𝜃𝑜 ∈ 𝐶0,𝛼(𝜕Ω𝑜).

Proof. Let (𝜃𝑜, 𝜃𝑖) ∈ 𝐶0,𝛼(𝜕Ω𝑜)×𝐶0,𝛼(𝜕Ω𝑖), 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}. By a straightforward computation based on the
theorem of change of variable in integrals we can see that

𝒦′𝑜𝜖 [𝜃𝑜, 𝜃𝑖](𝑥) = 𝒦′Ω𝑜 [𝜃𝑜](𝑥) + |𝜖|𝑛−1

ˆ
𝜕Ω𝑖

𝜈Ω𝑜(𝑥) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠 ∀𝑥 ∈ 𝜕Ω𝑜,

𝒦′𝑖𝜖 [𝜃𝑜, 𝜃𝑖](𝑡) = −sgn(𝜖)
ˆ

𝜕Ω𝑜

𝜈Ω𝑖(𝑡) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 −𝒦′Ω𝑖 [𝜃𝑖](𝑡) ∀𝑡 ∈ 𝜕Ω𝑖.

Then (4.8) holds with

𝒦′𝑜,𝑖
𝜖 [𝜃𝑖](𝑥) :=

ˆ
𝜕Ω𝑖

𝜈Ω𝑜(𝑥) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠 ∀𝑥 ∈ 𝜕Ω𝑜, ∀𝜃𝑖 ∈ 𝐶0,𝛼(𝜕Ω𝑖),

𝒦′𝑖,𝑜𝜖 [𝜃𝑜](𝑡) := −
ˆ

𝜕Ω𝑜

𝜈Ω𝑖(𝑡) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 ∀𝑡 ∈ 𝜕Ω𝑖, ∀𝜃𝑜 ∈ 𝐶0,𝛼(𝜕Ω𝑜).

By the regularity results for the integral operators with real analytic kernel of [42] (see also the argument in
the proof of Thm. 3.2) we can see that the maps 𝜖 ↦→ 𝒦′𝑜,𝑖

𝜖 and 𝜖 ↦→ 𝒦′𝑖,𝑜𝜖 are real analytic from ]−𝜖0, 𝜖0[ to
ℒ(𝐶0,𝛼(𝜕Ω𝑖), 𝐶0,𝛼(𝜕Ω𝑜)) and from ]−𝜖0, 𝜖0[ to ℒ(𝐶0,𝛼(𝜕Ω𝑜), 𝐶0,𝛼(𝜕Ω𝑖)), respectively.

To verify statement (i) we compute

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑖

𝜈Ω𝑜(𝑥) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂
= (−1)𝑘

∑︁
𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑖

𝜈Ω𝑜(𝑥) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑥− 𝜖𝑠)𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠,

and accordingly

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑖

𝜈Ω𝑜(𝑥) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂
|𝜖=0

= (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
𝜈Ω𝑜(𝑥) ·

(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑥)
ˆ

𝜕Ω𝑖

𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠.

To verify statement (ii), we note that we have

𝜕𝑘
𝜖

(︂ˆ
𝜕Ω𝑜

𝜈Ω𝑖(𝑡) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂
=
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑜

𝜈Ω𝑖(𝑡) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝜖𝑡− 𝑦)𝑡𝛽𝜃𝑜(𝑦) d𝜎𝑦
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and accordingly

𝜕𝑘
𝜖

(︂
−
ˆ

𝜕Ω𝑜

𝜈Ω𝑖(𝑡) · ∇𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂
|𝜖=0

= −
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!

ˆ
𝜕Ω𝑜

𝜈Ω𝑖(𝑡) ·
(︀
∇𝐷𝛽𝐺𝑛

)︀
(−𝑦)𝑡𝛽𝜃𝑜(𝑦) d𝜎𝑦

= (−1)𝑘
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑘!
𝛽!
𝑡𝛽𝜈Ω𝑖(𝑡) ·

ˆ
𝜕Ω𝑜

(︀
∇𝐷𝛽𝐺𝑛

)︀
(𝑦)𝜃𝑜(𝑦) d𝜎𝑦.

�

4.4. The operator 𝒲Ω(𝜖)

The last operator to consider is 𝒲Ω(𝜖) (see definition (2.6)). As usual, we define

𝒲𝑜
𝜖 [𝜃𝑜, 𝜃𝑖](𝑥) := 𝒲Ω(𝜖)[𝜓𝜖](𝑥) ∀𝑥 ∈ 𝜕Ω𝑜,

𝒲𝑖
𝜖[𝜃𝑜, 𝜃𝑖](𝑡) := 𝒲Ω(𝜖)[𝜓𝜖](𝜖𝑡) ∀𝑡 ∈ 𝜕Ω𝑖,

for all 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0} and (𝜃𝑜, 𝜃𝑖) ∈ 𝐶1,𝛼(𝜕Ω𝑜)× 𝐶1,𝛼(𝜕Ω𝑖), with 𝜓𝜖 as in (4.6). Then we take

𝒲𝜖 :=
(︀
𝒲𝑜

𝜖 ,𝒲𝑖
𝜖

)︀
∀𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}

and we wish to describe the map 𝜖 ↦→ 𝒲𝜖 from ] − 𝜖0, 𝜖0[ ∖ {0} to the space of operators
ℒ
(︀
𝐶1,𝛼(𝜕Ω𝑜)× 𝐶1,𝛼(𝜕Ω𝑖), 𝐶0,𝛼(𝜕Ω𝑜)× 𝐶0,𝛼(𝜕Ω𝑖)

)︀
.

Theorem 4.4. Let 𝛼, Ω𝑜, Ω𝑖 be as in (4.1). Let 𝜖0 be as in (4.2). There exist real analytic maps

]−𝜖0, 𝜖0[ → ℒ
(︀
𝐶1,𝛼

(︀
𝜕Ω𝑖

)︀
, 𝐶0,𝛼(𝜕Ω𝑜)

)︀
𝜖 ↦→ 𝒲𝑜,𝑖

𝜖

and
]−𝜖0, 𝜖0[ → ℒ(𝐶1,𝛼(𝜕Ω𝑜), 𝐶0,𝛼(𝜕Ω𝑖))

𝜖 ↦→ 𝒲𝑖,𝑜
𝜖

such that

𝒲𝜖 =
(︂𝒲Ω𝑜 𝜖|𝜖|𝑛−2𝒲𝑜,𝑖

𝜖

sgn(𝜖)𝒲𝑖,𝑜
𝜖 |𝜖|−1𝒲Ω𝑖

)︂
(4.9)

for all 𝜖 ∈ ]−𝜖0, 𝜖0[ ∖ {0}. Moreover, the following statements hold.

(i) The coefficients 𝒲𝑜,𝑖
(𝑘) of the power series expansion 𝒲𝑜,𝑖

𝜖 =
∑︀∞

𝑘=0 𝜖
𝑘𝒲𝑜,𝑖

(𝑘) with 𝜖 in a neighborhood of 0 are
given by

𝒲𝑜,𝑖
(𝑘)[𝜃

𝑖](𝑥) := (−1)𝑘+1
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑛∑︁
𝑙=1

1
𝛽!

(𝜈Ω𝑜(𝑥))𝑙(∇𝐷𝛽𝜕𝑙𝐺𝑛)(𝑥) ·
ˆ

𝜕Ω𝑖

𝜈Ω𝑖(𝑠)𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑘 ∈ N, 𝑥 ∈ 𝜕Ω𝑜, and 𝜃𝑖 ∈ 𝐶1,𝛼(𝜕Ω𝑖).
(ii) The coefficients 𝒲𝑖,𝑜

(𝑘) of the power series expansion 𝒲𝑖,𝑜
𝜖 =

∑︀∞
𝑘=0 𝜖

𝑘𝒲𝑖,𝑜
(𝑘) with 𝜖 in a neighborhood of 0 are

given by

𝒲𝑖,𝑜
(𝑘)[𝜃

𝑜](𝑡) := (−1)𝑘+1
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑛∑︁
𝑙=1

1
𝛽!
𝑡𝛽(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · (∇𝐷𝛽𝜕𝑙𝐺𝑛)(𝑦)𝜃𝑜(𝑦) d𝜎𝑦

for all 𝑘 ∈ N, 𝑡 ∈ 𝜕Ω𝑖, and 𝜃𝑜 ∈ 𝐶1,𝛼(𝜕Ω𝑜).
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Proof. Let (𝜃𝑜, 𝜃𝑖) ∈ 𝐶1,𝛼(𝜕Ω𝑜)×𝐶1,𝛼(𝜕Ω𝑖), 𝜖 ∈ ]−𝜖0, 𝜖0[∖{0}. By the theorem of change of variable in integrals
we can compute that

𝒲𝑜
𝜖 [𝜃𝑜, 𝜃𝑖](𝑥) = 𝒲Ω𝑜 [𝜃𝑜](𝑥)− |𝜖|𝑛−1sgn(𝜖)𝜈Ω𝑜(𝑥) · ∇𝑥

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

= 𝒲Ω𝑜 [𝜃𝑜](𝑥)− 𝜖|𝜖|𝑛−2
𝑛∑︁

𝑙=1

(𝜈Ω𝑜(𝑥))𝑙

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝜕𝑙𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑥 ∈ 𝜕Ω𝑜, and

𝒲𝑖
𝜖[𝜃𝑜, 𝜃𝑖](𝑡) = −sgn(𝜖)

𝑛∑︁
𝑙=1

(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝜕𝑙𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦 + |𝜖|−1𝒲Ω𝑖 [𝜃𝑖](𝑡)

for all 𝑡 ∈ 𝜕Ω𝑖. Then (4.9) holds with

𝒲𝑜,𝑖
𝜖 [𝜃𝑖](𝑥) := −

𝑛∑︁
𝑙=1

(𝜈Ω𝑜(𝑥))𝑙

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝜕𝑙𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

for all 𝑥 ∈ 𝜕Ω𝑜 and 𝜃𝑖 ∈ 𝐶1,𝛼(𝜕Ω𝑖), and

𝒲𝑖,𝑜
𝜖 [𝜃𝑜](𝑡) := −

𝑛∑︁
𝑙=1

(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝜕𝑙𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

for all 𝑡 ∈ 𝜕Ω𝑖, 𝜃𝑜 ∈ 𝐶1,𝛼(𝜕Ω𝑜).
By the regularity results for the integral operators with real analytic kernel of [42] (see also the argument in

the proof of Thm. 3.2) we can verify that the maps 𝜖 ↦→ 𝒲𝑜,𝑖
𝜖 and 𝜖 ↦→ 𝒲𝑖,𝑜

𝜖 are real analytic from ]−𝜖0, 𝜖0[ to
ℒ
(︀
𝐶1,𝛼(𝜕Ω𝑖), 𝐶0,𝛼(𝜕Ω𝑜)

)︀
and from ]−𝜖0, 𝜖0[ to ℒ

(︀
𝐶1,𝛼(𝜕Ω𝑜), 𝐶0,𝛼(𝜕Ω𝑖)

)︀
, respectively.

To verify statement (i) we compute

𝜕𝑘
𝜖

(︂
−

𝑛∑︁
𝑙=1

(𝜈Ω𝑜(𝑥))𝑙

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝜕𝑙𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂

= (−1)𝑘+1
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑛∑︁
𝑙=1

𝑘!
𝛽!

(𝜈Ω𝑜(𝑥))𝑙

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · (∇𝐷𝛽𝜕𝑙𝐺𝑛)(𝑥− 𝜖𝑠)𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠,

and accordingly

𝜕𝑘
𝜖

(︂
− 𝜈Ω𝑜(𝑥) · ∇𝑥

ˆ
𝜕Ω𝑖

𝜈Ω𝑖(𝑠) · ∇𝐺𝑛(𝑥− 𝜖𝑠)𝜃𝑖(𝑠) d𝜎𝑠

)︂
|𝜖=0

= (−1)𝑘+1
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑛∑︁
𝑙=1

𝑘!
𝛽!

(𝜈Ω𝑜(𝑥))𝑙(∇𝐷𝛽𝜕𝑙𝐺𝑛)(𝑥) ·
ˆ

𝜕Ω𝑖

𝜈Ω𝑖(𝑠)𝑠𝛽𝜃𝑖(𝑠) d𝜎𝑠.

To verify statement (ii) we compute

𝜕𝑘
𝜖

(︂
−

𝑛∑︁
𝑙=1

(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝜕𝑙𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂

= −
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑛∑︁
𝑙=1

𝑘!
𝛽!

(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · (∇𝐷𝛽𝜕𝑙𝐺𝑛)(𝜖𝑡− 𝑦)𝑡𝛽𝜃𝑜(𝑦) d𝜎𝑦
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and accordingly

𝜕𝑘
𝜖

(︂
−

𝑛∑︁
𝑙=1

(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · ∇𝜕𝑙𝐺𝑛(𝜖𝑡− 𝑦)𝜃𝑜(𝑦) d𝜎𝑦

)︂
|𝜖=0

= −
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑛∑︁
𝑙=1

𝑘!
𝛽!

(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · (∇𝐷𝛽𝜕𝑙𝐺𝑛)(−𝑦)𝑡𝛽𝜃𝑜(𝑦) d𝜎𝑦

= (−1)𝑘+1
∑︁

𝛽∈N𝑛

|𝛽|=𝑘

𝑛∑︁
𝑙=1

𝑘!
𝛽!
𝑡𝛽(𝜈Ω𝑖(𝑡))𝑙

ˆ
𝜕Ω𝑜

𝜈Ω𝑜(𝑦) · (∇𝐷𝛽𝜕𝑙𝐺𝑛)(𝑦)𝜃𝑜(𝑦) d𝜎𝑦.

�

In conclusion of this section, we note that, putting together the results obtained for the operators 𝒱𝜖, 𝒦𝜖, 𝒦′𝜖
and 𝒲𝜖, we may also describe the map that takes 𝜖 to the (pull-back of) the corresponding Calderón projector.

5. Some final remarks

We give a simple example of how the results of Section 4 may be applied. Here we can only show the most
important outlines of the arguments involved, for the detailed analysis of similar problems we refer the reader
to Dalla Riva et al. [18, 20]. Suppose we want to describe the dependence on 𝜖 of the solution 𝑢𝜖 ∈ 𝐶1,𝛼(Ω(𝜖))
of the mixed problem ⎧⎨⎩∆𝑢𝜖(𝑥) = 0 ∀𝑥 ∈ Ω(𝜖),

𝑢𝜖(𝑥) = 𝑓𝑜(𝑥) ∀𝑥 ∈ 𝜕Ω𝑜,
−𝜈𝜖Ω𝑖(𝑥) · ∇𝑢𝜖(𝑥) = 𝑓 𝑖(𝑥/𝜖) ∀𝑥 ∈ 𝜖𝜕Ω𝑖,

(5.1)

for a fixed datum (𝑓𝑜, 𝑓 𝑖) ∈ 𝐶1,𝛼(𝜕Ω𝑜)×𝐶0,𝛼(𝜕Ω𝑖). In particular, we are interested in 𝜖 that approaches 0 and
𝜖Ω𝑖 that shrinks to a point. We may proceed as follows: First we observe that problem (5.1) has at most one
solution for all 𝜖 ∈ ]0, 𝜖0[ (this can be proven by a standard energy argument). Then we look for a solution
written as a combination of a single layer potential and a constant function. That is, we take

𝑢𝜖(𝑥) = 𝒮Ω(𝜖)[𝜇𝜖](𝑥) + 𝜉𝜖 ∀𝑥 ∈ Ω(𝜖) (5.2)

for some function 𝜇𝜖 ∈ 𝐶0,𝛼(𝜕Ω(𝜖)) and some real number 𝜉𝜖. If we rescale the restriction of 𝜇𝜖 on 𝜖𝜕Ω𝑖 and
write

𝜇𝜖(𝑥) :=
{︂
𝜃𝑜

𝜖 (𝑥) if 𝑥 ∈ 𝜕Ω𝑜,

𝜃𝑖
𝜖(𝑥/𝜖) if 𝑥 ∈ 𝜖𝜕Ω𝑖,

we see that the function in (5.2) is a solution of (5.1) whenever the triple (𝜃𝑜
𝜖 , 𝜃

𝑖
𝜖, 𝜉𝜖) is a solution of the system

of integral equations

ℳ𝜖

⎛⎜⎝ 𝜃𝑜
𝜖

𝜃𝑖
𝜖

𝜉𝜖

⎞⎟⎠ =
(︂
𝑓𝑜

𝑓 𝑖

)︂
,

with

ℳ𝜖 :=

(︃
𝒱Ω𝑜 0 I

𝒦′𝑖,𝑜(0)
1
2 I−𝒦′Ω𝑖 0

)︃
+

(︃
0 𝜖𝑛−1

∑︀∞
𝑘=0 𝜖

𝑘𝒱𝑜,𝑖
(𝑘) 0∑︀∞

𝑘=1 𝜖
𝑘𝒦′𝑖,𝑜(𝑘) 0 0

)︃
(cf., Thms. 4.1 and 4.3). The right space to let the matrix operator ℳ𝜖 act on is

𝒳 := 𝐶0,𝛼(𝜕Ω𝑜)0 × 𝐶0,𝛼(𝜕Ω𝑖)× R
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with

𝐶0,𝛼(𝜕Ω𝑜)0 =
{︂
𝜃 ∈ 𝐶0,𝛼(𝜕Ω𝑜) :

ˆ
𝜕Ω𝑜

𝜃 d𝜎 = 0
}︂
,

because we can see that (︃
𝒱Ω𝑜 0 I

𝒦′𝑖,𝑜(0)
1
2 I−𝒦′Ω𝑖 0

)︃
is invertible from 𝒳 to

𝒴 := 𝐶1,𝛼(𝜕Ω𝑜)× 𝐶0,𝛼(𝜕Ω𝑖)

while (︃
0 𝜖𝑛−1

∑︀∞
𝑘=0 𝜖

𝑘𝒱𝑜,𝑖
(𝑘) 0∑︀∞

𝑘=1 𝜖
𝑘𝒦′𝑖,𝑜(𝑘) 0 0

)︃
is “small” in the operator norm of ℒ(𝒳 ,𝒴) as 𝜖 → 0. We deduce that ℳ𝜖 is invertible for 𝜖 small and so the
solution 𝑢𝜖 exists and it can be written as in (5.2) for 𝜖 sufficiently small. Moreover, using the Neumann series
theorem and working out some algebra, we may compute the power series expansion of the inverse operator ℳ−1

𝜖

and then derive the power series expansion of the triple (𝜃𝑜
𝜖 , 𝜃

𝑖
𝜖, 𝜉𝜖) as a function of the perturbation parameter

𝜖. This being done, we resort to the representation formula (5.2) and combining the expansion obtained for
(𝜃𝑜

𝜖 , 𝜃
𝑖
𝜖, 𝜉𝜖) with that of the single layer potential of Theorem 4.1 we obtain an expansion for the solution 𝑢𝜖 of

problem (5.1).
As mentioned above, the details of the computation go beyond the aim of this paper, but similar ideas were

used for example in [18] to obtain all the terms of the series expansion for the solution of a Dirichlet problem in
a perforated 2-dimensional domain. Now, the results of Section 4 can be applied in any dimension 𝑛 ≥ 2 and to
different boundary conditions. We may, for example, recover the result of Feppon and Ammari [24], which are
based on layer potentials with Dirichlet Green function as a kernel, and make them available also when the Green
function is not explicitly given. We observe, indeed, that formulas similar to those of Section 4 are available in
specific dimensions and geometric settings in Ammari et al. ([2], Lem. 3.3), Feppon and Ammari ([25], Prop. 2.3,
[24], Prop. 2.5), and in a number of previous papers by the authors (see in the introduction of this paper).

We believe, however, that the systematic presentation provided here is a useful toolbox in view of future
developments. In particular, the simple ideas illustrated above for the case of a mixed boundary value problem
may be extended to problems with nonlinear boundary conditions. We might, for example, replace the last
condition of (5.1) with a condition in the form

−𝜈𝜖Ω𝑖(𝑥) · ∇𝑢𝜖(𝑥) = 𝐹 𝑖(𝜖, 𝑥/𝜖, 𝑢𝜖(𝑥)),

where 𝐹 𝑖 is a map that, in some sense, “preserves” the real analyticity. For similar problems it is known that
the solution can be written in terms of analytic maps and (possibly singular) elementary functions of 𝜖 (see,
e.g., Lanza de Cristoforis [38,40], see also [12–14] for an elastic counterpart). Using the results of this paper and
the known explicit formulas for the series expansions of the composition operators (see [62], Chap. 2, Sect. 5),
we may now try to compute explicit series expansions also in the case of nonlinear conditions. This will be the
subject of future investigation.
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[9] M. Costabel and F. Le Louër, Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: appli-
cation to scattering by a homogeneous dielectric obstacle. Integral Equ. Oper. Theory 73 (2012) 17–48.

[10] M. Costabel, M. Dalla Riva, M. Dauge and P. Musolino, Converging expansions for Lipschitz self-similar perforations of a
plane sector. Integral Equ. Oper. Theory 88 (2017) 401–449.

[11] M. Dalla Riva, Potential theoretic methods for the analysis of singularly perturbed problems in linearized elasticity. Ph.D.
thesis, University of Padova (2008).

[12] M. Dalla Riva and M. Lanza de Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary
value problem: a functional analytic approach. Complex Var. Elliptic Equ. 55 (2010) 771–794.

[13] M. Dalla Riva and M. Lanza de Cristoforis, Hypersingularly perturbed loads for a nonlinear traction boundary value problem.
A functional analytic approach. Eur. Math. J. 1 (2010) 31–58.

[14] M. Dalla Riva and M. Lanza de Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear
traction boundary value problem: a functional analytic approach. Complex Anal. Oper. Theory 5 (2011) 811–833.

[15] M. Dalla Riva and M. Lanza de Cristoforis, A perturbation result for the layer potentials of general second order differential
operators with constant coefficients. J. Appl. Funct. Anal. 5 (2010) 10–30.

[16] M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole. J. Differ. Equ.
252 (2012) 6337–6355.

[17] M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a planar domain with a small hole.
J. Math. Anal. Appl. 422 (2015) 37–55.

[18] M. Dalla Riva, P. Musolino, and S.V. Rogosin, Series expansions for the solution of the Dirichlet problem in a planar domain
with a small hole. Asymptotic Anal. 92 (2015) 339–361.

[19] M. Dalla Riva, P. Musolino and R. Pukhtaievych, Series expansion for the effective conductivity of a periodic dilute composite
with thermal resistance at the two-phase interface. Asymptotic Anal. 111 (2019) 217–250.

[20] M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino, Singularly Perturbed Boundary Value Problems: A Functional
Analytic Approach. Springer Nature, Cham (2021).

[21] M. Dalla Riva, P. Luzzini and P. Musolino, Multi-parameter analysis of the obstacle scattering problem. Inverse Prob. 38
(2022) 17.

[22] M. Dalla Riva, P. Luzzini, P. Musolino and R. Pukhtaievych, Dependence of effective properties upon regular perturbations.
In: Mechanics and Physics of Structured Media: Asymptotic and Integral Equations Methods of Leonid Filshtinsky, edited by
I. Andrianov, S. Gluzman, V. Mityushev. Elsevier (2022) 271–301.

[23] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985).

[24] F. Feppon and H. Ammari, High order topological asymptotics: reconciling layer potentials and compound asymptotic expan-
sions. Multiscale Model. Simul. Preprint hal-03440755. (2021).

[25] F. Feppon and H. Ammari, Homogenization of sound-absorbing and high-contrast acoustic metamaterials in subcritical regimes.
SAM Research Report No. 2021-35. Preprint hal-03372593 (2021).

[26] G.B. Folland, Introduction to Partial Differential Equations, 2nd edition. Princeton University Press, Princeton, NJ (1995).

[27] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition. Vol. 224 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1983).
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