This study proposes a feature selection approach exploiting Conditional Mutual Information to identify the most relevant features to perform sex classification. The approach applied to features extracted from cardiovascular time series, is combined with a Linear Discriminant Analysis classifier. The feature selection method allowed to noticeably reduce the number of used features, achieving at the same time comparable and acceptable accuracy (∼ 62%) and overall good recall and F1-scores for females (∼ 71% and ∼ 63%, respectively).

Iovino, M., Lazic, I., Barà, C., Faes, L., Pernice, R. (2024). Conditional Mutual Information-based Feature Selection for Sex Differences Characterization. In 2024 13th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO) (pp. 1-2) [10.1109/esgco63003.2024.10766964].

Conditional Mutual Information-based Feature Selection for Sex Differences Characterization

Iovino, Marta;Lazic, Ivan;Faes, Luca;Pernice, Riccardo
2024-11-29

Abstract

This study proposes a feature selection approach exploiting Conditional Mutual Information to identify the most relevant features to perform sex classification. The approach applied to features extracted from cardiovascular time series, is combined with a Linear Discriminant Analysis classifier. The feature selection method allowed to noticeably reduce the number of used features, achieving at the same time comparable and acceptable accuracy (∼ 62%) and overall good recall and F1-scores for females (∼ 71% and ∼ 63%, respectively).
29-nov-2024
Settore IBIO-01/A - Bioingegneria
979-8-3503-9205-0
Iovino, M., Lazic, I., Barà, C., Faes, L., Pernice, R. (2024). Conditional Mutual Information-based Feature Selection for Sex Differences Characterization. In 2024 13th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO) (pp. 1-2) [10.1109/esgco63003.2024.10766964].
File in questo prodotto:
File Dimensione Formato  
2024_Iovino_ESGCO2024_published.pdf

Solo gestori archvio

Descrizione: Versione editoriale
Tipologia: Versione Editoriale
Dimensione 265.98 kB
Formato Adobe PDF
265.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2024_Iovino_ESGCO2024_preprint.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Dimensione 200.41 kB
Formato Adobe PDF
200.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/664779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact