UAS applications are nowadays experiencing a tremendous development both in the civil and in military sector. One of the main issues for this kind of autonomous vehicles is induced by atmospheric turbulence, which may pose a severe problem especially for small size UAV. The present research extends previous investigations to a broader range of turbulence spectra and tests an innovative procedure based on Extended Kalman Filter (EKF) autotune for wind identification

Montano F., Benedetti I. (2024). Automatic Wind Identification for UAS: a Case Study. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022 [10.1063/5.0210449].

Automatic Wind Identification for UAS: a Case Study

Montano F.
;
Benedetti I.
2024-06-07

Abstract

UAS applications are nowadays experiencing a tremendous development both in the civil and in military sector. One of the main issues for this kind of autonomous vehicles is induced by atmospheric turbulence, which may pose a severe problem especially for small size UAV. The present research extends previous investigations to a broader range of turbulence spectra and tests an innovative procedure based on Extended Kalman Filter (EKF) autotune for wind identification
7-giu-2024
978-0-7354-4954-1
Montano F., Benedetti I. (2024). Automatic Wind Identification for UAS: a Case Study. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022 [10.1063/5.0210449].
File in questo prodotto:
File Dimensione Formato  
montano.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/664766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact