Non-Hermitian (NH) physics predicts open quantum system dynamics with unique topological features such as exceptional points and the NH skin effect. We show that this new paradigm of topological systems can serve as probes for bulk Hamiltonian parameters with quantum-enhanced sensitivity reaching Heisenberg scaling. Such enhancement occurs close to a spectral topological phase transition, where the entire spectrum undergoes a delocalization transition. We provide an explanation for this enhanced sensitivity based on the closing of point gap, which is a genuinely NH energy gap with no Hermitian counterpart. This establishes a direct connection between energy-gap closing and quantum enhancement in the NH realm. Our findings are demonstrated through several paradigmatic NH topological models in various dimensions and potential experimental implementations.
Sarkar S., Ciccarello F., Carollo A., Bayat A. (2024). Critical non-Hermitian topology induced quantum sensing. NEW JOURNAL OF PHYSICS, 26(7) [10.1088/1367-2630/ad5c95].
Critical non-Hermitian topology induced quantum sensing
Ciccarello F.;Carollo A.;
2024-07-04
Abstract
Non-Hermitian (NH) physics predicts open quantum system dynamics with unique topological features such as exceptional points and the NH skin effect. We show that this new paradigm of topological systems can serve as probes for bulk Hamiltonian parameters with quantum-enhanced sensitivity reaching Heisenberg scaling. Such enhancement occurs close to a spectral topological phase transition, where the entire spectrum undergoes a delocalization transition. We provide an explanation for this enhanced sensitivity based on the closing of point gap, which is a genuinely NH energy gap with no Hermitian counterpart. This establishes a direct connection between energy-gap closing and quantum enhancement in the NH realm. Our findings are demonstrated through several paradigmatic NH topological models in various dimensions and potential experimental implementations.File | Dimensione | Formato | |
---|---|---|---|
Sarkar_2024_New_J._Phys._26_073010.pdf
accesso aperto
Descrizione: ARTICOLO
Tipologia:
Versione Editoriale
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.