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Abstract
Non-Hermitian (NH) physics predicts open quantum system dynamics with unique topological
features such as exceptional points and the NH skin effect. We show that this new paradigm of
topological systems can serve as probes for bulk Hamiltonian parameters with quantum-enhanced
sensitivity reaching Heisenberg scaling. Such enhancement occurs close to a spectral topological
phase transition, where the entire spectrum undergoes a delocalization transition. We provide an
explanation for this enhanced sensitivity based on the closing of point gap, which is a genuinely
NH energy gap with no Hermitian counterpart. This establishes a direct connection between
energy-gap closing and quantum enhancement in the NH realm. Our findings are demonstrated
through several paradigmatic NH topological models in various dimensions and potential
experimental implementations.

1. Introduction

Non-Hermitian (NH) Hamiltonians are a longstanding tool for describing open system dynamics.
Nonetheless, only in recent years it was realized that NH systems can exhibit fundamentally new phenomena
in both classical and quantum systems with topological nature [1]. These include the occurrence of
exceptional points, the NH skin effect and violation of bulk-boundary correspondence [2, 3]. Such effects
stem from the unique topology caused by energy gaps in the complex spectrum of NH systems, which can be
of two different types: the line gap and the point gap [4]. A line gap is a reference line in the complex energy
plane that separates different bands, see figure 1(a). On the other hand, a point gap is a reference energy that
is not reachable by any eigenstates of the NH Hamiltonian, see figure 1(b). When the spectrum forms a loop,
any interior point is a point gap with non-trivial spectral topology. In this case, the topological invariant is
the nonzero spectral winding number [4].

A major feature of NH physics is the extreme sensitivity of the spectrum to boundary conditions, e.g. the
coupling at the boundary that can smoothly change from Open Boundary Conditions (OBC) to Periodic
Boundary Conditions (PBC). This phenomenon has been exploited for quantum-enhanced sensing
protocols with NH probes to estimate the coupling at the boundary [5–19]. In contrast, the bulk
Hamiltonian parameter estimation problem is hardly explored. Most topological features are associated with
the boundary and the conventional bulk-boundary correspondence breaks down in the presence of NH skin
effect. The capability of such systems for detecting bulk parameters is therefore nontrivial and can provide
new insight into the origin of quantum-enhanced sensitivity. Devising such quantum sensors based on NH
topology is highly desirable as this would advance quantum sensing in the presence of decoherence.

In general, a sensing protocol aims to enhance the accuracy in the estimation of an unknown parameter
λ, which is encoded in the state of a (classical or quantum) system called probe. Accuracy is quantified by the
statistical standard deviation δλ, which is lower-bounded according to the well-known Cramér–Rao
inequality, δλ⩾1/

√
MF. Here,M is the number of independent trials and F is the Fisher information [20],
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Figure 1. Energy gaps of NH Hamiltonians in complex energy plane. (a) Line gap (blue dashed line) separating two NH bands
(red loops). Line gap closes when the loops merge. (b) Point gap inside a spectral loop (e.g. E0). Point gap closes when the loop
shrinks to an arc.

which in general grows with the probe size L as F∼Lb with a positive exponent b. The maximal scaling
achievable with a classical probe is b= 1 (shot noise limit or standard limit). Using a quantum probe,
instead, can result in b>1. Such quantum-enhanced sensitivity typically exploits genuine quantum features
such as superposition and entanglement. For instance, using Greenberger–Horne–Zeilinger entangled states
one can achieve b= 2 (Heisenberg limit) [21–25]. However, these probes may suffer from extreme
detrimental effects in the presence of decoherence [26] or perturbations in the system [27]. These problems
can be tackled using quantum many-body sensors, while still achieving enhanced sensitivity near quantum
criticality. This was shown for various types of quantum phase transitions such as second-order [28–38],
Floquet [39, 40], Stark-localization [41, 42], boundary time crystal [43, 44], and topological [45] phase
transitions. All of these transitions bear one common feature, which is the closing of an energy gap.
Accordingly, it is natural to conjecture that energy-gap closing is the fundamental ingredient for quantum
enhancement. Therefore, it is conceptually important to assess the possibility of enhanced sensitivity in NH
systems due to their unique energy gaps (see figure 1) that have no correspondence in Hermitian systems.

In this work, we show that NH topological systems can indeed achieve quantum-enhanced sensitivity
with Heisenberg scaling as a direct consequence of point gap closing (see figure 1(b)). Our results are
established through the study of several prototypical NH topological systems in various dimensions and even
with disorder. We first provide the necessary overview of single parameter estimation and the spectral
topology in NH systems in sections 2 and 3, respectively. To show the unique effect of NH topology, we
report the enhanced sensitivity in the single-band Hatano–Nelson model in section 4. We further move
towards multi-band systems by considering a NH extension of the Su–Schrieffer–Heeger (SSH) model in
section 5. To show the robustness of sensing against disorder, we look at the Aubrey–André–Harper (AAH)
model in section 6. Section 7 reports the sensitivity performance in a 2D NH Chern insulator model.
Section 8 confirms that the optimal measurement to achieve the ultimate sensitivity can be done in the
experimentally relevant position basis. In section 9, we point out how the enhancement reported in this
paper can be observed in ongoing experiments. We report the enhanced sensitivity in NH systems with line
gaps in section 10 before we conclude in section 11.

2. Parameter estimation

To estimate a single unknown parameter λ, this is first encoded in a probe’s quantum state ρλ. Next, a
measurement on the system is performed, the outcomes of which are processed by a statistical estimation
algorithm. The measurement is described by a set of projective operators {Πn} with the probability of the
nth outcome given by pn(λ) = Tr [ρλΠn]. With this classical probability distribution, the lower bound of
accuracy is associated with the basis-dependent classical Fisher information, FC =

∑
n pn(∂λ logpn)

2 [20].
The maximum of FC over all possible measurements is called the quantum Fisher information (QFI), which
achieves the ultimate precision bound. QFI can be expressed as FQ = Tr

[
L2
λρλ
]
, with the symmetric

logarithmic derivative operator Lλ defined implicitly as ∂λρλ = (ρλLλ+Lλρλ)/2. For pure states
ρλ = |ψλ⟩⟨ψλ| one gets Lλ = 2∂λρλ, and hence FQ = 4

(
⟨∂λψλ|∂λψλ⟩− |⟨∂λψλ|ψλ⟩|2

)
[20]. While the
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optimal measurement basis to obtain the ultimate precision bound is not unique, one choice is always given
by the Lλ eigenbasis.

While the formalism laid out above has been developed for Hermitian systems, one can still use it in NH
cases under special circumstances that have been considered in this work. The probe state for us is a
particular right eigenstate of a NH Hamiltonian, which is normalized by conventional norm so that
measurement procedures produce normalized probability distributions. This is a standard practice with pure
states in NH domain, both theoretically [46, 47] and experimentally [48, 49]. This enables us to define a valid
density operator upon which the standard procedure of defining QFI [20, 50] can be carried out, resulting in
the same expression mentioned above.

3. Spectral topology and NH skin effect

In Hermitian systems, topological phase transitions are accompanied by a band gap closing under PBC and
correspond to the emergence of gapless edge states under OBC [51]. The Hermitian band gap closing is
topologically equivalent to the line gap closing in NH systems [4] (see figure 1(a)). This suggests that
quantum-enhanced sensitivity can also be achieved near a NH line gap closure. However, NH systems also
support a unique topology of the complex spectra, which has no correspondence in Hermitian systems. In
1D lattice systems with PBC, the spectra can form loops due to the cyclic nature of the quasi-momentum.
Point gaps in the interior of these loops (see figure 1(b)) are associated to a non-zero spectral winding
number [4]. Presence of a spectral loop corresponds to NH skin effect, i.e. edge-localization of all bulk
eigenstates under OBC [52, 53]. When the Hamiltonian parameters are varied in a way that the PBC loops
contract to arcs, the NH skin effect vanishes [54–56]. We refer to this as point gap closing, where the spectral
winding number becomes zero and signals a spectral topological phase transition. In higher dimensions, the
eigen-energies can form spectral areas as the quasi-momenta cover the Brillouin zone (e.g. see the blue
regions in figure 5(a)). Finite spectral area and arcs with zero area, respectively, correspond to presence and
absence of NH skin effect for systems with OBC [57], although direct connection with point gap topology is
yet to be established [3]. However, the spectral area can be thought to be constituted of a continuum of
loops, each of which are formed by varying the momentum in only one spatial direction while keeping the
other momenta fixed. Each of these loops can be associated with a spectral winding number and point
gap [58]. By tuning the Hamiltonian parameters, it is possible to contract all the loops into arcs at once,
which we refer to as simultaneous point gap closing. As a result, the total spectral area can collapse into an arc
(e.g. see the red lines in figure 5(a)), signaling a vanishing NH skin effect for any OBC geometry [57]. The
other possibility, where the spectral area is nonzero but constitutes of arcs, corresponds to vanishing NH skin
effect for particular OBC geometries. See appendix E for more details. In all such cases, changes in the nature
of the OBC eigenstates can be used for sensing the parameter.

In this work, we consider first order skin effect, where almost all the eigenstates are edge-localized. When
the point gap closes, all these skin states go through a sharp change and become delocalized, which makes
them potential candidates for quantum-enhanced sensitivity. However, from a practical perspective, the most
relevant state for evolution with a NH Hamiltonian is the right eigenstate with OBC that has the largest
imaginary part in its energy as this will be the only state surviving in the long time limit [59–62]. We take this
state, after normalizing, as the probe state for most cases considered in this work. We note that, point gap
closing can also occur in NH systems with higher order skin effects [63] although the number of skin states
are significantly diminished. We focus on first order skin effect in this work as here the transition happens
almost across the whole spectrum. This is promising from an experimental view as the effect of enhancement
in the single particle energy levels should have dynamical imprints. In the following, we investigate the
sensing capability of an extensive set of NH systems and show that point gap closing indeed results in
quantum-enhanced sensitivity.

4. Single-band case

We first study the Hatano–Nelson model which is a 1D chain of size L, with the Hamiltonian [64, 65]

HHN =
∑
j

(JL|j⟩⟨j+1|+ JR|j+1⟩⟨j|) , (1)

where JL and JR are real asymmetric hopping terms towards left and right, respectively. The parameter to be
estimated is λ= JR/JL. At λ= λc =±1 the system’s point gap closes, signalled by a change in the winding
number (see appendix A). Note that while at λc = 1 the Hamiltonian becomes Hermitian, λc =−1 makes it
anti-Hermitian. Under PBC, this Hamiltonian can be diagonalized in the quasi-momentum |k⟩ basis, with a

3
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Figure 2. Hatano–Nelson model with λ= JR/JL in equation (1). (a) PBC spectrum. (b) Cumulative site-population for OBC
eigenstates shows the NH skin effect and its absence (inset). (c) Quadratic scaling of QFI at the transition λ= λc. (d) QFI Scaling
exponent near transition.

single-band spectrum Ek = (JL+JR)cosk+ i(JL−JR) sink, with k∈[0,2π). In figure 2(a), we plot this
spectrum in the complex energy plane which forms closed loops for λ ̸=λc. Point gap closing occurs at the
critical values λ= λc, for which the loops contract to a line. The spectrum changes dramatically if one
considers OBC instead. Here the analytical solutions can be obtained by employing the generalized Brillouin
zone (GBZ) formalism where the translational invariance in the large system size limit is exploited to write
down an ansatz for a bulk eigenstate as |ψ⟩=

∑
jβ

jϕ |j⟩ [52, 66–68]. See appendix B for more details. For the

Hatano–Nelson model, there are two solutions for β satisfying |β|=
√

|λ|. The energies are given by
Em = 2(JRJL)1/2 cos

mπ
L+1 , withm∈[1,L], and the corresponding eigenstates are |Em⟩=

∑
jwj,m|j⟩ in which (see

appendix C, [67, 69])

wj,m =Nmλ
j/2 sin

mπ

L+ 1
, (2)

with the normalization factorNm. Due to the presence of λj/2 in equation (2), for λ ̸=λc, every eigenstate is
exponentially localized at either edge with localization length∼1/ log(|λ|). In contrast, the eigenstates
become delocalized at λc and equivalently |β|→1. To see this more explicitly one can define the cumulative
population at site j as pj =

∑
m |wj,m|2 which is displayed in figure 2(b), for the same λ values as in

figure 2(a). The localization of pj clearly shows that whenever the PBC spectrum forms a loop, all the
corresponding OBC eigenstates localize at the edges, which is the NH skin effect. To evaluate how the
sensitivity scales with the system size, we compute the QFI with respect to λ for different OBC eigenstates. In
figure 2(c), the QFI at the transition FQ(λc) is plotted for the three representative eigenstates indexed by
m= 1,2,L. The scaling at the transition FQ(λc)∼aLb, with b≈2, clearly shows critically-enhanced
Heisenberg scaling for all eigenstates. The analytical derivation of this scaling is presented in appendix C.
Unlike exponent b, coefficient a depends on the choice of the eigenstate. To study the sensitivity across the
transition, in figure 2(d) we plot the exponent b versus λ−λc with λc =−1 for the eigenstate withm= L,
corresponding to the largest imaginary energy. Other eigenstates behave similarly. Deviation from the
transition causes the exponent b to eventually vanish, signaling the emergence of a localized phase.

5. Two-band case

Our next focus is the NH version of the SSH model for an 1D chain with L cells, each with two sites A and
B [52]. The Hamiltonian is

HSSH =
∑
j

(J1L|j,A⟩⟨j,B|+ J1R|j,B⟩⟨j,A|+ J2 (|j,A⟩⟨j+1,B|+ |j+1,B⟩⟨j,A|)) , (3)

with asymmetric intra-cell hoppings J1L and J1R and inter-cell hopping J2. The parameter of interest is
λ= J1R/J1L. Here, due to the presence of two sub-lattices (A and B), the PBC spectrum generally forms two
loops in the complex energy plane (similar to two bands in the Hermitian case). Consequently, this model
shows a rich phase diagram as a function of the Hamiltonian parameters [70]. This includes: (i) merging of
two loops into a single one, signaling line gap closing, equivalent to the standard Hermitian band gap closing;

4
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Figure 3. Non-Hermitian SSH model with λ= J1R/J1L in equation (3). Here J2 = 1. (a) PBC spectrum. (b) Quadratic scaling of
QFI at the transition. (Inset) QFI Scaling exponent near transition.

and (ii) shrinking of loops into arcs (as in the previous model), signaling point gap closing (red curve in
figure 3(a)). As before, the presence of the PBC spectral loops correspond to localized OBC bulk states,
namely NH skin effect. The GBZ ansatz here results again in two possible localization parameters satisfying
|β|=

√
|λ| [69], see appendix D for more details. In figure 3(a), we set J2 = 1 and plot the PBC spectrum for

different values of λ. The spectral loops collapse into arcs when |λ|= 1, where the point gap closes and the
OBC eigenstates delocalize as |β|→1. To investigate the sensitivity at the transition, we calculate the QFI of
the OBC eigenstate with largest imaginary energy (i.e. the steady state) at λc =−1. There are two eigenstates
with largest imaginary energy near λc, with equal and opposite real energies. We have numerically checked
that the QFI at the transition behaves similarly for both the states as well as for their superpositions. In
figure 3(b), the QFI is plotted against the system size L for the state with largest imaginary energy and
negative real energy. Again one observes the critically-enhanced Heisenberg scaling FQ(λc)∼Lb, with b≈2. As
the inset shows, the enhancement decreases away from λc. Note that the enhanced sensitivity is generic to all
eigenstates and the choice of this specific eigenstate is motivated by its dominance in the long-time dynamics.

6. Disordered case

We now consider a NH extension of the AAH Hamiltonian, given by [71]

HAAH =
∑
j

(J(|j⟩⟨j+1|+ h.c.)+Vcos(2παj+θ+ih)|j⟩⟨j|) . (4)

Here J is a standard hopping parameter, while V is the disorder amplitude, α the (irrational)
quasi-frequency, θ a real phase and h is the strength of an imaginary phase which has to be estimated. The
value hc = log(2J/V) is a multi-critical point for both parity-time (PT) symmetry breaking and localization
transitions, captured by a spectral winding number with θ running from 0 to 2π (see appendix A for more
details). In the thermodynamic limit, this number vanishes for h<hc while the eigenstates are delocalized
with real PBC spectrum (unbroken PT phase). For h>hc, instead, the winding number is−1 and the
eigenstates are now localized with complex PBC spectrum (broken PT phase) that can form spectral loops
(see figure 4(a)). Due to lack of translational invariance, the GBZ formalism does not apply here. To avoid
finite-size effects, we follow the standard numerical procedure [72, 73] for choosing the irrational parameter
α. Accordingly, for a system size L= Fn (with Fn as the nth Fibonacci number), α is approximated by
Fn+1/Fn. As n→∞, α converges to the golden ratio (

√
5+1)/2. To infer the scaling of the QFI with respect

to h (i.e. for λ= h,λc = hc) versus system size, we vary n between 9 (corresponding to L= 34) and 18
(corresponding to L= 2584). In figure 4(b) we plot FQ(λc) as a function of L, which again shows Heisenberg
scaling FQ(λc)∼Lb, with b≈2. This scaling is in agreement with that of the fidelity susceptibility in the
Hermitian case [73]. In the inset we show the behavior of b away from the transition. The above results also
show the robustness of sensors based on topological systems against local perturbations, as the
Hatano–Nelson model with random disorder can be mapped to the Hamiltonian HAAH [71].

7. Two-dimensional case

As a prototypical 2D topological model, we consider a NH version of the Qi-Wu-Zhang (QWZ) Chern
insulator [66, 74, 75]. This is a bipartite square lattice with Bloch Hamiltonian at momentum k= (kx,ky)
given by

HQWZ (k) = (2t1 sinkx + iγx)σx +
(
2t1 sinky + iγy

)
σy +

[
mz − 2t2

(
coskx + cosky

)
+ iγz

]
σz, (5)

5
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Figure 4. Non-Hermitian AAH model with λ= h in equation (4). Here J= V= 1, α= (
√
5+1)/2, θ = 0. (a) PBC spectrum.

(b) Quadratic scaling of QFI at the transition. (Inset) QFI Scaling exponent near transition.

Figure 5. Non-Hermitian QWZ model with λ= t1/mz in equation (5). (a) PBC spectrum. The fixed parameters for a L×L lattice
are,mz = 1, t2 = 0.2,γx = 0.1,γy = 0.1,γz = 0.01,L= 200. (b) Quadratic scaling of QFI at the transition for OBC along both
directions. (Inset) QFI Scaling exponent near the transition for the same OBC.

where σx,y,z are the Pauli matrices, t1, t2 are hopping parameters,mz is an onsite term (which is fixed to
unity), and γx,y,z are the imaginary terms making the system NH. We note that, since there is no unique
definition of spectral winding number in 2D systems, finding the value of the critical parameter for the
transition requires some care. We now briefly outline how to determine the parameters driving the transition
(see appendix E for further details). The PBC spectrum generically consists of two spectral areas
corresponding to two bands, shown as blue areas in figure 5(a). Each band in turn can be decomposed into
spectral loops each forming when ky (for example) varies in the first Brillouin zone, while kx is held fixed.
Accordingly, a kx-dependent spectral winding number [58] can be written for each loop relying on their
point gap topology. The parameter values for the transition are then found using the same GBZ formalism as
in 1D models. The simultaneous point gap closing occurs at three independent points, t1/mz = 0, t2/mz = 0,
and γy/mz = 0 (the other Hamiltonian parameters being fixed to arbitrary values). Further numerical
inspection reveals that only at t1/mz = 0, the contractions happen in such a way that they collectively also
form an overall arc for the PBC spectrum (see red curve in figure 5(a)). Hence, the collapse of the spectral
area corresponds to vanishing NH skin effect for any OBC geometry [57]. Choosing λ= t1/mz with λc = 0
and OBC along both directions, we calculate the QFI for the OBC eigenstate with largest imaginary energy
(i.e. the steady state). For an L×L lattice, we find the scaling of QFI at transition as FQ(λc)∼Lb, with b≈2. The
inset shows how b decreases away from λc. The other simultaneous point gap closing instances correspond to
vanishing of skin effect if OBC is only along y, and similar scaling of QFI is found for that OBC geometry.

8. Optimal measurement basis

These prototypical examples regarding the NH spectral topology establish the connection between point gap
closing and quantum-enhanced sensing with the physically relevant states. It turns out that the optimal
measurement basis is given by the position basis (except for the disordered case where∼95% of QFI is
obtained), which is typical for QFI near a localization transition. The classical Fisher information in position
basis closely follows the QFI, as shown in appendix F. This measurement is local in nature, hence easily
implementable in practice.

9. Experimental realization

NHmodels with skin effects are routinely realized in various experimental platforms such as, electric
circuits [76–78], acoustic [79, 80] and photonic lattices [81, 82], and mechanical metamaterials [83, 84]. In

6
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Figure 6. Non-unitary quantum walk model with λ= θ2 in equation (6). Here θ1 = π/4, γ = 0.5 (a) PBC spectrum. (b)
Quadratic scaling of QFI at the transition. (Inset) QFI scaling exponent near transition.

the context of quantum simulations, the NH version of SSH model has been realized with lossy optical
lattices [85, 86]. An excellent candidate for probing the point gap closing is the photonic discrete-time
quantum walk experiment where the NH skin effect has been observed [48, 87–89]. Specifically, in the
recently conducted experiments [48, 87], the internal dimensions of the quantum walker were encoded in
the photon polarizations ↑,↓ and the dynamics along an 1D lattice were governed by the non-Unitary
evolution operator

UQW = R θ1
2
S↑R θ2

2
MR θ2

2
S↓R θ1

2
, (6)

where Rθ =
∑

j |j⟩⟨j| ⊗ e−iθσy acts on the internal space and S↑(↓) shifts the walker to the left (right) by one
lattice site if the polarization is ↑ (↓). Non-Unitarity is implemented by the gain-loss operator
M=

∑
j |j⟩⟨j| ⊗ eγσz . The unitary coin operator Rθ can rotate the spin in a position-dependent way and can

be implemented with different settings of half-wave plates. The unitary spin-dependent shift operator S
translates the particle by one site either way in the one-dimensional lattice and is realized with beam
displacers. For a time-multiplexed scheme, the shift operator is realized by splitting the different polarized
components with polarizing beam splitters and transferring them through two different optical fibers of
different lengths. Different arrival times at the detectors correspond to their different shifts. The non-unitary
spin-dependent loss operatorM is implemented with partially polarizing beam splitters. To simulate
balanced gain and loss, an operator with more loss and less loss terms is used with a constant scaling factor.
The measurement in position basis is done with avalanche photo-diodes which also resolve the spin.
UQW gives a stroboscopic description of the dynamics under an effective NH Hamiltonian Heff,
i.e. UQW = e−iHeff [90]. The location of the point gap closing for this Heff can be determined by
the GBZ formalism. The localization parameter β can take two values which satisfy
|β|=

√
|(coshγ cosθ2− sinhγ)/(coshγ cosθ2+ sinhγ)| [87]. As γ is non-zero, the transition must occur at

cosθ2 = 0 where |β| is 1 and makes NH skin effect vanish for OBC. We choose λ= θ2 with λc = 3π/2, and
confirm that the PBC spectrum loops indeed collapse to an arc at λc (see figure 6(a)). The other parameters
are fixed at θ1 = π/4 and γ = 0.5. Figure 6(b) shows the algebraic scaling of QFI for the steady state with
OBC at the transition again with exponent b≈2, while the inset shows the exponent receding to 0 as one
moves away from λc. Therefore, by tuning the experimental parameters close to the transition, it should be
possible to probe the findings reported in this work. Moreover, the measurements in these experiments are
carried out in the position basis which is the optimal basis to achieve ultimate precision in this system.

10. Sensing near line gap closing

Having established the connection between point gap closing and enhanced sensitivity, we now report on
NH systems with line gap topology. As line gap closures have direct correspondence with band gap closing
Hermitian topology [4, 59], one expects enhanced sensitivity for the chiral edge states that emerge in the
topologically non-trivial phase. However, we find that this is not the case when the system has a non-trivial
point gap. For the SSH model in equation (3), the edge states have exactly zero energy, which makes them
theoretically trackable. The line gap closes at J1 =±(J2 ± γ) for PBC and the edge states emerge at
J1 =±

√
J22 ± γ2. This discrepancy is due to NH skin effect which causes modification of the conventional

bulk-boundary correspondence [52]. Both these cases are away from the point gap closing point and no
enhanced sensing occurs. Similar observation is found for the stripe geometry for the 2D Chern insulator in
equation (5), where the edge states actually can be chosen to have the largest imaginary energy. This can be
explained through the fact that, due to the presence of point gap, the edge state transit into bulk state, which

7
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Figure 7. NH extensions of SSH model without point gap. (a) PBC spectrum of chiral inverse symmetric SSH model with
λc = π/4 in equation (7). (b) Scaling of QFI of the edge state at the transition. (Inset) QFI scaling exponent near transition. (c)
OBC spectrum of PT symmetric SSH model with λ= J1/J2 in equation (8). Here δ = 0.5. (d) Quadratic scaling of QFI of the
edge state at the transition. (Inset) QFI scaling exponent near transition.

are also localized due to NH skin effect. We therefore look into two NH extensions of the SSH model that do
not have point gap [91]. The chiral and inversion symmetric SSH model is given by the Hamiltonian

HSSH-I =
∑
j

(̃
J1 (|j,A⟩⟨j,B|+ |j,B⟩⟨j,A|)+ J̃2 (|j,A⟩⟨j+ 1,B|+ |j+ 1,B⟩⟨j,A|)

)
, (7)

where the complex hopping parameters J̃1, J̃2 are parameterized by λ: J̃1 = eiπ/5 sinλ and J̃2 = cosλ. Here the
line gap closes at λ= π/4 (figure 7(a)), and the QFI for the zero-energy edge states show enhanced sensing
capability (figure 7(b)).

On the other hand, the PT symmetric SSH Hamiltonian is

HSSH-II =
∑
j

(
(J1|j,A⟩⟨j,B|+ J2(|j,A⟩⟨j+ 1,B|+H.c.)+ iδ(|j,A⟩⟨j,A| − |j,B⟩⟨j,B|)

)
, (8)

with real hopping parameters and imaginary staggered potential strength δ. Here the line gap closing occurs
at J1 = J2 ± δ, where the PT symmetry breaking transition happens but the chiral edge states exist only for
|J1|< |J2|, with zero real energy and±δ as the imaginary part (figure 7(c)). The state with energy iδ has the
largest imaginary energy in the spectrum and when used to compute QFI, shows quadratic scaling at the
transition λ= J1/J2 = 1 (figure 7(d)).

11. Conclusion

In this work, we showed that quantum-enhanced sensitivity for the bulk Hamiltonian parameters of NH
topological systems can be achieved with Heisenberg scaling. This is a significant result given that these
systems have so far been thought to be applicable for only sensing boundary perturbations. Through
investigation of several paradigmatic models, we found that the origin of such enhanced precision is directly
connected with the closing of point gaps which affects the entire spectrum. Remarkably, this kind of novel
gap closing is a genuinely NH phenomenon with no analogue in Hermitian physics. We point out that
realizing NH Hamiltonians require open quantum systems. In this respect, our work shows that, despite
being usually detrimental to sensing, decoherence can be a resource for quantum-enhanced sensitivity, thus
offering practical advantages. Finally, we showed potential implementations of our protocol in various
physical platforms and point out how the enhancement can be observed in a recently conducted experiment.
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Appendix A. Spectral winding number

Non-Hermitian Hamiltonians have complex eigen-energies which gives rise to an unique spectral topology
that has no correspondence in Hermitian systems. The topological invariant is determined by the winding of
the phase of the complex energies. This is given by the spectral winding number. In 1D lattices with
translational invariance, it is defined with respect to a reference energy E0 as [4]

w1D (E0) =
1

2π i

ˆ 2π

0
dk ∂k ln(Ek − E0). (A.1)

Spectral winding number in a 2D system for winding along y-direction for a given value of momentum along
x-direction with respect to a reference energy E0 is defined as [58]

w2D (kx,E0) =
1

2π i

ˆ 2π

0
dky ∂ky ln(Ek − E0). (A.2)

For the (quasi) disordered model in equation (4), the winding number is defined by circulating the real
phase θ of the disorder potential form 0 to 2π while taking the thermodynamic limit, i.e. system size L→∞.
Keeping the other parameter fixed, the Hamiltonian can be considered as a function of the phase,
i.e. HAAH(θ), and the winding number with respect to a reference energy E0 is [71]

wAAH (E0) =
1

2π i

ˆ 2π

0
dθ ∂θ lndet(HAAH (θ)− E0). (A.3)

Appendix B. GBZ formalism

The OBC eigenstates can be analytically studied with GBZ formalism [52, 66–68]. This method was
developed to modify the conventional bulk-boundary correspondence, which is the central pillar of
Hermitian topological physics, and breaks down in the presence of NH skin effect [52, 92]. Here, the bulk
eigenstate is approximated, in the large system size limit, by the ansatz |ψ⟩=

∑
j,sβ

jϕs|j, s⟩, where j and s
denote a lattice site and internal dimension at each site, respectively. Localization and internal state are
encoded in β and ϕs, respectively. The eigenvalue equation results in an algebraic equation for β and the
solutions βn are used to write down a superposition with coefficients cn for the energy eigenstate
|E⟩=

∑
j,s,n cnβ

j
nϕn,s|j, s⟩. Imposition of boundary conditions often result in analytically tractable solutions.

In particular, the Hamiltonian parameter values at the point gap closing can be identified by looking at the
limit |β|→1, which makes the eigenstates delocalize and thus NH skin effect disappears. The GBZ formalism
allows for analytical computation of the QFI in certain cases, as detailed below. Note that βj in the ansatz
closely resemble the phase eikj appearing in Bloch’s theorem. In the Hermitian case, eik produces an unit circle
in the complex plane, representing the Brillouin zone, which is generalized to a closed loop by the solutions
βn for the NH case. This GBZ has been successfully used to calculate the topological invariants correctly for
1D systems with tight-binding Hamiltonians, while its generalization in higher dimensions is still a topic of
active research [1].

Appendix C. QFI calculation for Hatano–Nelsonmodel

Hatano–Nelson model is a single-band model that captures the uniqueness of NH topology due to
asymmetric hopping parameters to left and right on an 1D chain. The Hamiltonian is given by the
equation (1). The model is schematically depicted in figure C1(a). The winding number in equation (A.1)

9
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Figure C1. Schematics of some of the NH models considered in this work. (a) HN model. (b) NH version of SSH model. (c) NH
version of 2D Chern insulator based on QWZ model.

takes values 1 and−1 for |JR/JL|< 1 and |JR/JL|> 1, respectively. The GBZ ansatz for a bulk eigenstate in the
presence of NH skin effect for OBC is

|ψ⟩=
∑
j

βjϕ |j⟩. (C.1)

The eigen-equation HHN|ψ⟩= E|ψ⟩ in the bulk gives

JLβ
2 − Eβ+ JR = 0. (C.2)

The two solutions β1 and β2 satisfy, with definition λ≡ JR/JL ≡ z2 = (reiθ)2,

β1β2 =
JR
JL

= r2ei2θ and β1 +β2 =
E

JL
. (C.3)

The full solution is the superposition

|ψ⟩=
∑
j

(
c1β

j
1ϕ1 + c2β

j
2ϕ2

)
|j⟩. (C.4)

The eigen-equation at boundaries ( j = 1,L) and equation (C.3) result in ϕ1 =−ϕ2 and(
β1
β2

)L+1

= 1 =⇒ β1
β2

= ei2θm , (C.5)

where θm =mπ/(L+ 1) withm ∈ [1,L], asm= L+ 1 corresponds to the trivial solution. Therefore we have

|β1|= |β2|= r. Choosing β1 = reiθ
(1)
,β2 = reiθ

(2)
and solving θ(1) + θ(2) = 2θm and θ(1) − θ(2) = 2θ gives us

the solution presented in equation (2)

|ψm⟩=Nm

∑
j

λ
j
2 sin

mπ

L+ 1
|j⟩=Nm

∑
j

rjeijθ
ωm −ω−1

m

2i
|j⟩, (C.6)

with ωm = e
i mπ
L+1 , and

Nm =
2√√√√

2 |λ|2(1−|λ|L)
1−|λ| −

(
|λ|ei

2πm
L+1

)2(
1−|λ|Lei

2πmL
L+1

)
1−|λ|ei

2πm
L+1

−

(
|λ|e−i 2πm

L+1

)2(
1−|λ|Le−i 2πmL

L+1

)
1−|λ|e−i 2πm

L+1

=
2√

2 r2(1−r2L)
1−r2 − (rωm)

2(1−(rωm)
2L)

1−(rωm)
2 − (r/ωm)

2(1−(r/ωm)
2L)

1−(r/ωm)
2

. (C.7)

Recalling the definition of QFI

FQ (λ) = 4
(
⟨∂λψm|∂λψm⟩− |⟨∂λψm|ψm⟩|2

)
, (C.8)
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we first calculate |∂λψm⟩. Employing the chain rule of partial differentiation with the variables (r,θ), we
write down

|∂λψm⟩= (∂λr) |∂rψm⟩+(∂λθ) |∂θψm⟩. (C.9)

Now we express |ψm⟩= |ψ̃m⟩/|||ψ̃m⟩||, with |ψ̃m⟩=
∑

j(re
iθ)j sin(mπ/(L+ 1))|j⟩, and observe that

|∂θψ̃m⟩= i r|∂rψ̃m⟩. As |||ψ̃m⟩|| is independent of θ, we have

|∂θψm⟩=
1

|||ψ̃m⟩||
|∂θψ̃m⟩=

i r

|||ψ̃m⟩||
|∂rψ̃m⟩=

i r

|||ψ̃m⟩||
∂r

(
|||ψ̃m⟩|| |ψm⟩

)
= i r

(
∂r|ψm⟩+

∂r|||ψ̃m⟩||
|||ψ̃m⟩||

|ψm⟩

)
.

(C.10)

Inserting equation (C.10) in equation (C.9), we get

|∂λψm⟩= (∂λr+ i r∂λθ) |∂rψm⟩+

(
i r
∂r|||ψ̃m⟩||
|||ψ̃m⟩||

∂λθ

)
|ψm⟩

≡ a|∂rψm⟩+ b|ψm⟩. (C.11)

Using equation (C.10), the QFI can be rewritten as

FQ (λ) = 4|a|2
(
⟨∂rψm|∂λψm⟩− |⟨∂rψm|ψm⟩|2

)
= 4

(
(∂λr)

2
+ r2 (∂λθ)

2
)(

⟨∂rψm|∂rψm⟩− |⟨∂rψm|ψm⟩|2
)
. (C.12)

The pre-factor ((∂λr)2 + r2(∂λθ)2) approaches a constant value as λ→ λc, and does not depend on the
system size. The L-dependence comes from derivatives with respect to r. We can write

FQ (λ) =
(
(∂λr)

2
+ r2 (∂λθ)

2
)
×

((
2(∂rNm)

2
L∑

j=1

(
(r)2j−(rω)2j−(r/ω)2j

)

+
N 2

m

r2

L∑
j=1

j2
(
(r)2j−(rω)2j−(r/ω)2j

)
+ 4

Nm ∂rNm

r

L∑
j=1

j
(
(r)2j−(rω)2j−(r/ω)2j

))

−

∣∣∣∣∣2(Nm ∂rNm)
L∑

j=1

(
(r)2j−(rω)2j−(r/ω)2j

)
+ 2

N 2
m

r

L∑
j=1

j
(
(r)2j−(rω)2j−(r/ω)2j

)∣∣∣∣∣
2)
. (C.13)

As the transition, λ→λc, and consequently, r→1. The L-dependence can be shown in the limiting values:
Nm→

√
2/L, ∂rNm→−

√
L/2,

∑
j(r)

2j→L,
∑

j(rωm)
2j→− 1,

∑
j(r/ωm)

2j→− 1,
∑

j j(r)
2j→L(L+ 1)/2,∑

j j(rωm)
2j→(L+ 1)/(ω2

m − 1),
∑

j j(r/ωm)
2j→(L+ 1)/(ω−2

m − 1),
∑

j j
2(r)2j→(2L3 + 3L2 + L)/6,∑

j j
2(rωm)

2j→(L2)/(ω2
m − 1),

∑
j j
2(r/ωm)

2j→L2/(ω−2
m − 1). Combining all these terms, the QFI shows L2

scaling in large L limit.

Appendix D. Point gap closing for non-Hermitian SSHmodel

The NH extension of the SSH model is considered with asymmetric intra-cell hopping. The model still has
sublattice symmetry. The Hamiltonian is given by the equation (3). The model is schematically depicted in
figure C1(b). The ansatz for a bulk eigenstate within the GBZ formalism in the presence of NH skin effect for
OBC is

|ψ⟩=
∑
j

βj (ϕA|j,A⟩+ϕB|j,B⟩) . (D.1)

The eigen-equation HSSH|ψ⟩= E|ψ⟩ in the bulk gives

J2J1Lβ
2 +
(
J22 + J1LJ1R − E2

)
β+ J2J1R = 0. (D.2)

The two solutions β1 and β2 satisfy

β1β2 =
J1R
J1L

= r2ei2θ and β1 +β2 =
E2 − J22 − J1LJ1R

J2J1L
. (D.3)
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The full solution is

|ψ⟩=
∑
j

((
c1β

j
1ϕ1,A+c2β

j
2ϕ2,A

)
|j,A⟩+

(
c1β

j
1ϕ1,B+c2β

j
2ϕ2,B

)
|j,B⟩

)
≡
∑
j

(
ψj,A|j,A⟩+ψj,B|j,B⟩

)
. (D.4)

Using it for the eigen-equation at the boundaries ( j = 1,L) and using equation (D.3) gives c1ϕ1,B =−c2ϕ2,B
and (

β1
β2

)L+1

=
J1R + J2β1
J1R + J2β2

, (D.5)

with |β1|= |β2|= r. Near the transition, J1R/J1L =±1. However J1R = J1L is the Hermitian case and
therefore, we focus on the J1R =−J1L case. Here, β1β2 =−1 and we can choose β1 = reiθ,β2 =−re−iθ. The
solution for θ is given by the transcendental equation

cos(L+ 1)θ+
i J2√
|J1RJ1L|

sin(Lθ) = 0 (for even L)

sin(L+ 1)θ− i J2√
|J1RJ1L|

cos(Lθ) = 0 (for odd L) , (D.6)

and the wavefunction is given by

ψj,A ∝ (i r)j
(
i sin( j(θ−π/2))+

J2√
|J1RJ1L|

cos( j(θ−π/2)− θ)

)
,

ψj,B ∝ (i r)j (sin( j(θ−π/2))) . (D.7)

Although we have an analytical expression for the wavefunction, it requires the knowledge of the phase θ of
β. As this can only be determined by graphically solving the transcendental equations in equation (D.6), the
QFI cannot be fully expressed analytically to extract the scaling behavior. The quadratic scaling of QFI at the
transition have been displayed with numerical calculations.

Appendix E. Point gap closing for non-Hermitian 2D Chern insulator

A NH extension of a prototypical 2D Chern insulator is considered with imaginary Zeeman terms. The Bloch
Hamiltonian for a square lattice with internal levels a and b is given by the equation (5). In real space the
model is schematically depicted in figure C1(c). For this L×L lattice, the PBC spectral area can be
decomposed into L number of loops in the complex energy plane, each one corresponding to a particular kx
value. This is shown for some representative kx points in the top panel of figure E1 where figure E1(e) shows
how they add up to generate the total spectral area. With suitable choice of Hamiltonian parameters, all the
loops can be contracted to to arcs (middle panel of figure E1) in such a way that the overall spectrum also has
zero area, as shown in figure E1(j). This causes the NH skin effect to vanish irrespective of OBC geometry.
The bottom panel shows another type of shrinkage to arcs which do not add up to an overall arc for the full
system and the resulting spectrum still has finite area (figure E1(o)). In this case, NH skin effect vanishes
when OBC is taken only along the y-direction. To systematically locate the critical parameters for which the
two different types of NH Skin effect vanishing occur, we look at the point gap topology of a spectral loop
formed at a fixed value of kx. In this context, the GBZ ansatz for a bulk eigenstate within the GBZ formalism
in the presence of NH skin effect for OBC only along y-direction is

|ψ⟩=
∑
j

βj (ϕa|j,a⟩+ϕb|j,b⟩) , (E.1)

where a,b are the two internal states. The eigen-equation for the kx-dependent quasi-1D Hamiltonian gives(
t21 − t22

)
β4 − 2

(
γyt1 +(mz−2t2 coskx+iγz) t2

)
β3

+
(
E2+γ2y + 2

(
t21−t22

)
−(mz−2t2 coskx+iγz)

2−(2t1 sinkx+iγx)
2
)
β2

+ 2
(
γyt1 − (mz−2t2 coskx+iγz) t2

)
β+

(
t21 − t22

)
= 0. (E.2)
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Figure E1. Decomposition of PBC spectrum of the 2D Chern insulator model. Few kx points are chosen to show the
energy along the Brillouin zone of ky, forming spectral loops or arcs. The fixed parameters for a 200× 200 lattice are,
mz = 1, t2 = 0.2,γx = 0.1,γz = 0.01. (top panel) t1 = 0.2,γy = 0.1. (middle panel) t1 = 0,γy = 0.1. (bottom panel)
t1 = 0.2,γy = 0.

This is a quartic equation, but for the special case of t1 = t2, reduces to a quadratic one with the two solutions
β1 and β2 satisfying

β1β2 =
mz − 2t2 coskx + iγz − γy
mz − 2t2 coskx + iγz + γy

. (E.3)

With the constraint |β1|= |β2|, it is easy to see that for γy = 0, the NH skin effect vanishes for the stripe
geometry. This observation is in fact a known result [66] and correspond to the bottom panel of figure E1.
However, we numerically confirm that this also holds for t1 ̸= t2. The effective 1D Hamiltonian along
y-direction resembles a SSH chain with the asymmetric inter-cell hoppings J̃1L =mz − 2t2 coskx + iγz + γy,
J̃1R =mz − 2t2 coskx + iγz − γy, intra-cell hopping J̃2 =−(t1 + t2), hopping between site a and site b in the
right-adjacent cell J̃3 = t1 − t2, and on-site gain and loss terms with strength 2t1 sinkx + iγx. For this type of
SSH chain, the point gap closing occurs at J̃2 =±J̃3, which gives t1 = 0 and t2 = 0. We numerically observe
that the first case correspond to the total spectral area going to zero (middle panel of figure E1) where as the
second case is similar to that shown in the bottom panel of figure E1.

Appendix F. Classical Fisher information in position basis

The calculation of the classical Fisher information (CFI) in position basis follows the procedure mentioned
in section 2. The CFI and QFI are quite close to each other for the Hatano–Nelson model, the NH version of
SSH model, and the 2D Chern insulator model, as shown in figures F1(a), (b), and (d), respectively. For the
NH extension of AAH model, the discrepancy between CFI and QFI near the transition (figure F1(c)) goes
down as one goes away from the transition, although the scaling behaviour for CFI and QFI reamin
unchanged.

Figure F1. Comparison of QFI and CFI for the different point-gapped models considered in this work. (a) Hatano–Nelson model
on a 100 site chain. (b) NH version of SSH model on a 100 site chain with J2 = 1. (c) NH extension of AAH model on a 610 site
chain with J= V= 1, α= (

√
5+1)/2, θ = 0. (d) 2D Chern insulator on a 70× 70 lattice with

mz = 1, t2 = 0.2,γx = 0.1,γz = 0.01.
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