The aim of this paper is to study a parameter-dependent nonlinear differential problem with Sturm-Liouville type equation and Dirichlet boundary conditions. In particular, by requiring a suitable behavior on the nonlinearity, we determine an interval of parameter lambda for which the problem admits three or infinitely many solutions.

Amoroso E., Bonanno G., D'Agui G., Foti S. (2023). Multiple solutions for nonlinear Sturm–Liouville differential equations with possibly negative variable coefficients. NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS, 69 [10.1016/j.nonrwa.2022.103730].

Multiple solutions for nonlinear Sturm–Liouville differential equations with possibly negative variable coefficients

Amoroso E.;Bonanno G.
;
D'Agui G.;Foti S.
2023-02-01

Abstract

The aim of this paper is to study a parameter-dependent nonlinear differential problem with Sturm-Liouville type equation and Dirichlet boundary conditions. In particular, by requiring a suitable behavior on the nonlinearity, we determine an interval of parameter lambda for which the problem admits three or infinitely many solutions.
feb-2023
Settore MATH-03/A - Analisi matematica
Amoroso E., Bonanno G., D'Agui G., Foti S. (2023). Multiple solutions for nonlinear Sturm–Liouville differential equations with possibly negative variable coefficients. NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS, 69 [10.1016/j.nonrwa.2022.103730].
File in questo prodotto:
File Dimensione Formato  
Multiple solutions for nonlinear Sturm–Liouville differential.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 712.64 kB
Formato Adobe PDF
712.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/661904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact