In recent years, there has been an increasing use of fractional differential equations due to their ability to effectively represent various engineering phenomena, including viscoelasticity, heat transport, non-local continuum, and others. These equations take into account certain effects that cannot be accurately predicted using classical differential equations. This paper provides a comprehensive analysis of the fractional compound motion, specifically focusing on the response of a one-term fractional differential equation that is excited by a Poissonian white noise process. The present study introduces a straightforward equation for the probability density function of fractional compound motion. The validity of this equation is subsequently confirmed by the execution of various numerical simulations. Furthermore, a comprehensive analysis is conducted on the self-similarity of fractional compound motion, demonstrating that the phenomenon can be regarded as self-similar in weak sense. This characteristic can be effectively employed to mitigate the loss of Markovianity in fractional differential equations.
Russotto, S., Di Paola, M., Pirrotta, A. (2024). Self-similarity and probability density function of the transient response of fractional compound motion. ENGINEERING STRUCTURES, 319 [10.1016/j.engstruct.2024.118842].
Self-similarity and probability density function of the transient response of fractional compound motion
Russotto, Salvatore
Primo
;Di Paola, Mario;Pirrotta, AntoninaUltimo
2024-11-15
Abstract
In recent years, there has been an increasing use of fractional differential equations due to their ability to effectively represent various engineering phenomena, including viscoelasticity, heat transport, non-local continuum, and others. These equations take into account certain effects that cannot be accurately predicted using classical differential equations. This paper provides a comprehensive analysis of the fractional compound motion, specifically focusing on the response of a one-term fractional differential equation that is excited by a Poissonian white noise process. The present study introduces a straightforward equation for the probability density function of fractional compound motion. The validity of this equation is subsequently confirmed by the execution of various numerical simulations. Furthermore, a comprehensive analysis is conducted on the self-similarity of fractional compound motion, demonstrating that the phenomenon can be regarded as self-similar in weak sense. This characteristic can be effectively employed to mitigate the loss of Markovianity in fractional differential equations.File | Dimensione | Formato | |
---|---|---|---|
11 Self-similarity and probability density function of the transient response of fractional compound motion.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.