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A B S T R A C T

In recent years, there has been an increasing use of fractional differential equations due to their ability
to effectively represent various engineering phenomena, including viscoelasticity, heat transport, non-local
continuum, and others. These equations take into account certain effects that cannot be accurately predicted
using classical differential equations.

This paper provides a comprehensive analysis of the fractional compound motion, specifically focusing
on the response of a one-term fractional differential equation that is excited by a Poissonian white noise
process. The present study introduces a straightforward equation for the probability density function of
fractional compound motion. The validity of this equation is subsequently confirmed by the execution of
various numerical simulations. Furthermore, a comprehensive analysis is conducted on the self-similarity of
fractional compound motion, demonstrating that the phenomenon can be regarded as self-similar in weak sense.
This characteristic can be effectively employed to mitigate the loss of Markovianity in fractional differential
equations.
. Introduction

In many cases of engineering interest, the structural excitation is
ot deterministic and thus it has to be modeled as a stochastic input.
or example, ambient vibrations are usually assumed as a Gaussian
hite noise process [1–5] while vehicular traffic on bridges is usually
odeled as a Poissonian white noise process [6–9]. The probabilistic

esponse of linear and non-linear dynamic systems under Poissonian
hite noise input has been studied by extending Ito calculus to non-
ormal excitations [10,11], by using path integral methods [12] and
y using complex fractional moments [13].

The response of a linear dashpot to a Poissonian white noise process
s the classical compound motion (CM) that can be defined as the
lassical integral of the Poissonian white noise process. Its extension to
he fractional case is the so-called fractional compound motion (fCM).
n literature there are different definitions of the fCM that extend the
lassical CM to the fractional case by properly modifying the input pro-
ess. Specifically, the fractionality is introduced in the counting process
hat rules the number of event over time. In this way, it is possible to
btain time-fractional compound processes, space-fractional compound
rocesses or space–time-fractional compound processes [14]. However,
n many cases of engineering interest, like viscoelastic systems excited
y stochastic input [15–17], the fractionality is not in the input process

∗ Corresponding author at: Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed.8, Palermo, 90128, Italy.
E-mail address: salvatore.russotto01@unipa.it (S. Russotto).

but it is in the differential equation that governs the structural motion.
In the latter case, it is possible to model some effects experimentally
observed, like long-tail memory of the systems, that cannot be predicted
by differential equations of integer order. For this reason, here, the
fractionality is introduced in the order of the time derivative present in
the equation of motion, and thus the fCM is obtained as the fractional
integral of the Poissonian white noise process.

In this paper, for the first time, a simple closed form equation for
the probability density function (PDF) of the fCM is proposed showing
that, for time instant sufficiently distant from zero, it tends to maintain
a proportionality between its statistics calculated in different time axes,
i.e. it tends to a self-similar process. Specifically, it is shown that
the fCM is not strongly self-similar but it can be considered weakly
self-similar.

The proposed equation of the PDF of the fCM is useful in several
cases of engineering interest, such as the probabilistic characteriza-
tion of the response of devices with intermediate behavior between
spring and dashpot, i.e. springpot, excited by Poissonian processes.
Furthermore, it is the basis for the probabilistic characterization of
the response of fractional oscillators, viscoelastic dynamic systems
with multiple degrees of freedom and continuous viscoelastic dynamic
systems forced by Poissonian processes. Finally, the weak self-similarity
141-0296/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
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can be used to overcome the loss of Markovianity of the response of
the aforementioned dynamical systems excited by Poissonian processes,
allowing to drastically reduce the computational burden required for
the calculation of the response statistics both for numerical simulations
and for experimental tests and in-situ tests.

The paper is composed as follows: in Section 2 the basic definition of
fractional operators, fractional Brownian motion (fBM), self-similarity
and fCM is introduced; in Section 3 a simple equation for the PDF
of the fCM is proposed and its truthfulness is assessed with the aid
of numerical simulations; in Section 4 weak self-similarity of fCM is
discussed while, in Section 5, some concluding remarks are reported.

2. Mathematical formulation

In this section some preliminary concepts and definitions on frac-
tional operators, fBM, self-similarity and fCM are reported for intro-
ducing appropriate symbology.

2.1. Fractional operators

Fractional operators are convolution integrals with power law ker-
nel [18,19] and they can be considered as the generalization, from
the integer order to the order 𝛽 ∈ R+ (or even to complex ones with
positive real part), of the classical derivatives and integrals. Fractional
operators have the same properties of the classical ones (linearity,
Leibniz rule, Fourier transform, Laplace transform, semi-group prop-
erty...) and, for 𝛽 = 1, 2,…, they revert into the classical derivatives
and integrals of integer order. In literature, there are a lot of repre-
sentations of fractional operators such as the Riemann–Liouville (RL)
fractional derivative and integral, the Caputo fractional derivative and
the Grünwald–Letnikov fractional derivative. Other definitions have
been proposed by Marchaud, Rietz, Hadamard and others. The RL frac-
tional derivative, labeled as (0𝐷

𝛽
𝑡 𝑓 )(𝑡), and the RL fractional integral,

labeled as (0𝐼
𝛽
𝑡 𝑓 )(𝑡), can be expressed, respectively, in the form

(0𝐷
𝛽
𝑡 𝑓 )(𝑡) =

1
𝛤 (𝑛 − 𝛽)

𝑑𝑛

𝑑𝑡𝑛 ∫

𝑡

0
(𝑡 − 𝜏)𝑛−𝛽−1𝑓 (𝜏) 𝑑𝜏; 𝛽 > 0 (1)

(0𝐼
𝛽
𝑡 𝑓 )(𝑡) =

1
𝛤 (𝛽) ∫

𝑡

0
(𝑡 − 𝜏)𝛽−1𝑓 (𝜏) 𝑑𝜏; 𝛽 > 0 (2)

where 𝑛 is the integer part of 𝛽 and 𝛤 (𝛽) = ∫ ∞
0 𝑒−𝑥𝑥𝛽−1 𝑑𝑥 is the Euler

amma function that interpolates all the factorials.
As it happens in classical differential calculus

0𝐼
𝛽
𝑡 (0𝐷

𝛽
𝑡 𝑓 ))(𝑡) ≠ (0𝐷

𝛽
𝑡 (0𝐼

𝛽
𝑡 𝑓 ))(𝑡) (3)

ut if 𝑓 (𝑡) = 0 up to 𝑡 = 0, then the inequality in Eq. (3) becomes an
dentity.

.2. Fractional Brownian motion and self-similarity

The Brownian motion (BM) [20], labeled as 𝐵(𝑡), is the solution of
he following differential equation
{

�̇�(𝑡) = 𝑊 (𝑡)
𝐵(0) = 0 𝑤.𝑝.1

(4)

n which 𝑤.𝑝.1 means ‘‘with probability one’’ and 𝑊 (𝑡) is a zero-mean
aussian white noise process. The latter is a delta-correlated process
aving correlation function

[𝑊 (𝑡1)𝑊 (𝑡2)] = 𝑞𝛿(𝑡2 − 𝑡1); 𝑡2 > 𝑡1 > 0 (5)

in which 𝐸[⋅] represents the expected value, 𝛿(⋅) is the Dirac’s delta
function and 𝑞 > 0 is the constant strength of 𝑊 (𝑡). Since the BM is a
Gaussian process, it can be fully characterized in probabilistic setting
by its correlation function, i.e.

𝐸[𝐵(𝑡1)𝐵(𝑡2)] =
𝑡2 𝑡1

𝐸[𝑊 (𝜏1)𝑊 (𝜏2)] 𝑑𝜏1 𝑑𝜏2 = 𝑞𝑡1; 𝑡2 > 𝑡1 > 0 (6)
2

∫0 ∫0
and, by putting 𝑡1 → 𝑡2 → 𝑡 in Eq. (6), the variance of 𝐵(𝑡) can be
obtained in the form

𝜎2𝐵(𝑡) = 𝐸[𝐵2(𝑡)] = 𝑞𝑡. (7)

Starting from the variance reported in Eq. (7), the PDF of the BM can
be calculated as

𝑝𝐵(𝑏, 𝑡) =
1

√

2𝜋𝜎2𝐵(𝑡)
exp

(

− 𝑏2

2𝜎2𝐵(𝑡)

)

(8)

being 𝑏 the domain of 𝐵(𝑡). It is to be stressed that the BM is a first-order
arkovian process and thus, to obtain 𝐵(𝑡) at a generic time instant

𝑗 = 𝑗𝛥𝑡, it is sufficient to know only 𝐵(𝑡) at 𝑡𝑗−1 = (𝑗−1)𝛥𝑡 being 𝛥𝑡 the
ime sampling step. The same consideration on Markovianity remains
alid for the statistics of 𝐵(𝑡).

FBM, labeled as 𝐵𝛽 (𝑡), is an extension of the classical BM and it
epresents the solution of the following fractional differential equa-
ion [21]
{

(0𝐷
𝛽
𝑡 𝐵𝛽 )(𝑡) = 𝑊 (𝑡)

𝐵𝛽 (𝑡) = 0 𝑤.𝑝.1 ∀𝑡 ≤ 0.
(9)

ince 𝐵𝛽 (𝑡) = 0 ∀𝑡 ≤ 0 𝑤.𝑝.1, the solution of Eq. (9) can be expressed,
ccording to the RL fractional integral definition, as

𝛽 (𝑡) = (0𝐼
𝛽
𝑡 𝑊 )(𝑡) = 1

𝛤 (𝛽) ∫

𝑡

0
(𝑡 − 𝜏)𝛽−1𝑊 (𝜏) 𝑑𝜏. (10)

he correlation function of the fBM can be calculated as
𝐸[𝐵𝛽 (𝑡1)𝐵𝛽 (𝑡2)] =

1
𝛤 2(𝛽) ∫

𝑡2

0 ∫

𝑡1

0
(𝑡1 − 𝜏1)𝛽−1(𝑡2 − 𝜏2)𝛽−1𝐸[𝑊 (𝜏1)𝑊 (𝜏2)] 𝑑𝜏1 𝑑𝜏2

(11)

nd its closed form equation can be found in literature [21]. By putting
1 → 𝑡2 → 𝑡 in Eq. (11), the variance of 𝐵𝛽 (𝑡) can be obtained as

2
𝐵𝛽
(𝑡) = 𝐸[𝐵2

𝛽 (𝑡)] =
𝑞

𝛤 2(𝛽)
𝑡2𝛽−1

2𝛽 − 1
; 𝑡 ≥ 0. (12)

The PDF of the fBM can therefore be expressed as

𝑝𝐵𝛽
(𝑏𝛽 , 𝑡) =

1
√

2𝜋𝜎2𝐵𝛽
(𝑡)

exp

(

−
𝑏2𝛽

2𝜎2𝐵𝛽
(𝑡)

)

(13)

in which 𝑏𝛽 is the domain of 𝐵𝛽 (𝑡). It is to be stressed that the fBM
reverts into the classical BM for 𝛽 = 1 and that for 𝛽 ≠ 1, 2, 3,…, 𝐵𝛽 (𝑡)
s not a Markovian process. This means that in order to obtain 𝐵𝛽 (𝑡) in
generic time instant 𝑡𝑗 , it is necessary to know the entire past history
f the process. The same consideration on the loss of Markovianity
emains valid for the statistics of 𝐵𝛽 (𝑡), i.e. in order to obtain the
tatistics of 𝐵𝛽 (𝑡) in a generic time instant 𝑡𝑗 , it is necessary to know
he entire past history of the statistics.

Self-similarity was introduced by Mandelbrot [22,23] before the
heory of fractal geometry [24]. Particularly, if by changing the tem-
oral scale from 𝑡 to 𝑎𝑡, with 𝑎 > 0, the statistics in the time axis 𝑎𝑡 are
elated to those in the time axis 𝑡 through a coefficient 𝑎𝑚𝐻 in which

is the order of the statistic and 𝐻 > 0 is the Hurst index, then the
rocess 𝑋(𝑡) is self-similar; i.e.

𝑋(𝑎𝑡1),… , 𝑋(𝑎𝑡𝑚)} 𝑑 𝑎𝑚𝐻{𝑋(𝑡1),… , 𝑋(𝑡𝑚)} (14)

where the symbol 𝑑 means equal in distribution.
FBM is a relevant example of self-similar process [21,23], in fact,

by putting 𝑡1 → 𝑎𝑡1 and 𝑡2 → 𝑎𝑡2 in Eq. (11), it can be easily noted that

[𝐵𝛽 (𝑎𝑡1)𝐵𝛽 (𝑎𝑡2)] = 𝑎2𝛽−1𝐸[𝐵𝛽 (𝑡1)𝐵𝛽 (𝑡2)]. (15)

he same result can be obtained in terms of variance. In fact, by
hanging the temporal scale from 𝑡 to 𝑎𝑡, Eq. (12) becomes

2 (𝑎𝑡) = 𝐸[𝐵2(𝑎𝑡)] =
𝑞 (𝑎𝑡)2𝛽−1

; 𝑡 ≥ 0. (16)
𝐵𝛽 𝛽 𝛤 2(𝛽) 2𝛽 − 1
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By comparing Eqs. (12) and (16), it is possible to state that

𝜎2𝐵𝛽
(𝑎𝑡) = 𝑎2𝛽−1𝜎2𝐵𝛽

(𝑡). (17)

Since fBM is a Gaussian process, then it is sufficient that the self-
similarity is verified only in terms of second order correlation (or in
terms of variance) in order to state that the process is strongly self-
similar and thus, from Eqs. (15) and (17), it is clear that fBM is a
strongly self-similar process having Hurst index 𝐻 = 𝛽 − 1∕2. It is to
be stressed that, if the variance is known in a generic time instant 𝑡𝑗 ,
then Eq. (17) can be used to calculate the variance in another time
instant 𝑎𝑡𝑗 and, by varying the value of 𝑎, the variance can be obtained
for each time instant desired. For this reason, self-similarity is a very
important property that allows to overcome the loss of Markovianity in
fractional differential equations.

2.3. Fractional compound motion

The CM [20], labeled as 𝐶(𝑡), can be defined as the solution of the
following differential equation
{

�̇�(𝑡) = 𝑊𝑃 (𝑡)
𝐶(0) = 0 𝑤.𝑝.1

(18)

in which 𝑊𝑃 (𝑡) is a zero-mean Poissonian white noise process. The
latter is a stochastic process constituted by a train of impulses with
random amplitudes 𝑌𝑘 occurring at random time instants 𝑇𝑘 distributed
according to the Poissonian distribution. This means that the time
instants 𝑇𝑘 at which the spikes occur are such that the increments
𝑁(𝑡1, 𝑡2), labeled as Poisson counting process of the stochastic process
𝑇 (𝑡), take an integer value giving the number of events in [𝑡1, 𝑡2). The
probability 𝑝{𝑁(𝑡1, 𝑡2) = 𝑔} = 𝑝𝑁 (𝑡1, 𝑡2) is assumed to satisfy:

1. the random variables 𝑁(𝑡1, 𝑡2), 𝑁(𝑡2, 𝑡3), . . . , 𝑁(𝑡𝑗−1, 𝑡𝑗 ) with 𝑡1 <
𝑡2 < ⋯ < 𝑡𝑗 are mutually independent;

2. for 𝑡𝑗 − 𝑡𝑗−1 = 𝛥𝑡𝑗 sufficiently small, 𝑝𝑁 (𝑡𝑗−1, 𝑡𝑗 ) = 𝜆𝛥𝑡𝑗 + (𝛥𝑡𝑗 )
being 𝜆 the number of impulses per unit time.

If 𝛥𝑡𝑗 → 0, then (𝛥𝑡𝑗 ) → 0 and this implies that the probability of the
occurrence of two or more random instants in which the impulse occur
in an infinitesimal interval is zero. The probability of occurrence of 𝑔
events in [𝑡𝑟, 𝑡𝑠) for the process 𝑇 (𝑡) is given as

𝑝𝑁 (𝑡𝑟, 𝑡𝑠) =
(𝜆(𝑡𝑟 − 𝑡𝑠))𝑔

𝑔!
exp(−𝜆(𝑡𝑟 − 𝑡𝑠)); 𝑡𝑟 > 𝑡𝑠 > 0 (19)

that is just the Poisson distribution. The correspondent mean number of
events in the same time interval is 𝐸[𝑁(𝑡𝑟, 𝑡𝑠)] = 𝜆(𝑡𝑟 − 𝑡𝑠), the variance
of 𝑁(𝑡𝑟)−𝑁(𝑡𝑠) is also 𝐸[𝑁(𝑡𝑟, 𝑡𝑠)] = 𝜆(𝑡𝑟−𝑡𝑠) and the correlation function
𝑅𝑁 (𝑡𝑟, 𝑡𝑠) is given as

𝑅𝑁 (𝑡𝑟, 𝑡𝑠) = 𝜆min(𝑡𝑟, 𝑡𝑠). (20)

Therefore, the Poissonian white noise process can be expressed as

𝑊𝑃 (𝑡) =
𝑁(𝑡)
∑

𝑘=1
𝑌𝑘𝛿(𝑡 − 𝑇𝑘) (21)

in which 𝑁(𝑡) represents the Poisson counting process that gives the
number of spikes in the interval [0, 𝑡). The solution of Eq. (18) can be
expressed as

𝐶(𝑡) = ∫

𝑡

0
𝑊𝑃 (𝜏) 𝑑𝜏; (22)

and thus

𝐶(𝑡) =
𝑁(𝑡)
∑

𝑘=1
𝑌𝑘𝑈 (𝑡 − 𝑇𝑘) (23)

being 𝑈 (𝑡) the unit step function. It is to emphasize that the counting
process 𝑁(𝑡) may be considered as the CM in the case in which 𝑌𝑘 =
3

1 ∀𝑘.
The fCM, labeled as 𝐶𝛽 (𝑡), is an extension of the classical CM and it
represents the solution of the following differential equation
{

(0𝐷
𝛽
𝑡 𝐶𝛽 )(𝑡) = 𝑊𝑃 (𝑡)

𝐶𝛽 (𝑡) = 0 𝑤.𝑝.1 ∀𝑡 ≤ 0.
(24)

ince 𝐶𝛽 (𝑡) = 0 ∀𝑡 ≤ 0 𝑤.𝑝.1, the solution of Eq. (24) can be expressed,
ccording to the RL fractional integral definition, as

𝛽 (𝑡) = (0𝐼
𝛽
𝑡 𝑊𝑃 )(𝑡) =

1
𝛤 (𝛽) ∫

𝑡

0
(𝑡 − 𝜏)𝛽−1𝑊𝑃 (𝜏) 𝑑𝜏 (25)

nd thus

𝛽 (𝑡) =
𝑁(𝑡)
∑

𝑘=1

𝑌𝑘(𝑡 − 𝑇𝑘)𝛽−1𝑈 (𝑡 − 𝑇𝑘)
𝛤 (𝛽)

. (26)

It is to be stressed that for 𝛽 = 1, Eq. (26) coalesces with the classical
CM 𝐶(𝑡).

Considering that 𝑊𝑃 (𝑡) is a delta-correlated process, the variance of
𝐶𝛽 (𝑡), labeled as 𝜎2𝐶𝛽

(𝑡), can be easily calculated in the form

2
𝐶𝛽
(𝑡) =

𝜆𝐸[𝑌 2
𝑘 ]

𝛤 2(𝛽) ∫

𝑡

0
(𝑡2 − 2𝑡𝜏1 + 𝜏21 )

𝛽−1 𝑑𝜏1 =
𝜆𝐸[𝑌 2

𝑘 ]

𝛤 2(𝛽)
𝑡2𝛽−1

2𝛽 − 1
; 𝑡 ≥ 0.

(27)

rom Eq. (27) it can be noted that the variance of the fCM coalesces
ith the variance of a fBM having strength 𝑞(𝑡) = 𝜆𝐸[𝑌 2

𝑘 ] ∀𝑡 ≥ 0.
his means that, by changing the temporal scale from 𝑡 to 𝑎𝑡, Eq. (27)
ecomes

2
𝐶𝛽
(𝑎𝑡) =

𝜆𝐸[𝑌 2
𝑘 ]

𝛤 2(𝛽)
(𝑎𝑡)2𝛽−1

2𝛽 − 1
; 𝑡 ≥ 0 (28)

and thus

𝜎2𝐶𝛽
(𝑎𝑡) = 𝑎2𝛽−1𝜎2𝐶𝛽

(𝑡). (29)

rom Eq. (29) it can be noted that self-similarity is verified for the
ariance and that the Hurst index is 𝐻 = 𝛽 − 1∕2. However, it is
ot sufficient to state that 𝐶𝛽 (𝑡) is strongly self-similar since, in the
imit of validity of the central limit theorem, the fCM is Gaussian
nly asymptotically. For the statistics of order higher than two, self-
imilarity is not verified since the Hurst index changes with the order
f the statistics with law

𝑚 = 𝛽 − 𝑚 − 1
𝑚

. (30)

For this reason, fCM cannot be considered strongly self-similar. How-
ever, it is to be stressed that if 𝜆 → ∞ and 𝜆𝐸[𝑌 2

𝑘 ] → 𝑐, with 𝑐 ∈ R+,
hen the fCM reverts into a fBM having strength 𝑞(𝑡) = 𝜆𝐸[𝑌 2

𝑘 ] ∀𝑡 ≥ 0
nd only in this case it is a strongly self-similar process.

. Probability density function of the fractional compound motion

In this section, a simple equation for the PDF of the fCM is proposed.
pecifically, in the first subsection, the mathematical form of the pro-
osed PDF is described in detail while, in the second subsection, the
roposed equation of the PDF of the fCM is compared with the PDF
btained from the numerical simulations performed.

.1. Proposed equation of the PDF of the fCM

The proposed equation of the PDF of the fCM is composed by two
ifferent parts. The first part is a Dirac’s delta 𝛿(𝑐𝛽 ) multiplied by
modulating function 𝛼1(𝑗𝛥𝑡) that represents the probability that a

ample of the process 𝐶𝛽 (𝑡) is still quiescent at a generic time instant 𝑡𝑗 .
he function 𝛼1(𝑗𝛥𝑡) can be easily calculated, by putting 𝑔 = 0, 𝑡𝑠 = 0
nd 𝑡𝑟 = 𝑡𝑗 = 𝑗𝛥𝑡 in Eq. (19), as

(𝑗𝛥𝑡) =
(𝜆𝑗𝛥𝑡)0

exp(−𝜆𝑗𝛥𝑡) = exp(−𝜆𝑗𝛥𝑡). (31)
1 0!
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Therefore, the probability that a sample of the process 𝐶𝛽 (𝑡) is not
quiescent at a generic time instant 𝑡𝑗 = 𝑗𝛥𝑡 is

𝛼2(𝑗𝛥𝑡) = 1 − 𝛼1(𝑗𝛥𝑡) = 1 − exp(−𝜆𝑗𝛥𝑡). (32)

The second part of the proposed equation of the PDF of the fCM
depends not only on 𝛼2(𝑗𝛥𝑡) but also on a PDF �̃�𝐶𝛽

(𝑐𝛽 , 𝑗𝛥𝑡) in turn
dependent on the distribution of spikes 𝑌𝑘. However, in this paper it
is assumed as a Gaussian distribution, and thus it assumes the form

�̃�𝐶𝛽
(𝑐𝛽 , 𝑗𝛥𝑡) =

1
√

2𝜋�̃�2𝐶𝛽
(𝑗𝛥𝑡)

exp
(

−
𝑐2𝛽

2�̃�2𝐶𝛽
(𝑗𝛥𝑡)

)

. (33)

ince in 𝑡 = 0𝛥𝑡 = 0 all the samples of the fCM are quiescent, then the
roposed PDF of the fCM in the same time instant is

𝐶𝛽
(𝑐𝛽 , 0) = 𝛼1(0)𝛿(𝑐𝛽 ) = 𝛿(𝑐𝛽 ). (34)

n 𝑡 = 𝛥𝑡, the PDF of the fCM can be expressed in the form

𝐶𝛽
(𝑐𝛽 , 𝛥𝑡) = 𝛼1(𝛥𝑡)𝛿(𝑐𝛽 ) + 𝛼2(𝛥𝑡)�̃�𝐶𝛽

(𝑐𝛽 , 𝛥𝑡) (35)

n which 𝛼1(𝛥𝑡) represents the probability that a sample of the fCM pro-
ess is quiescent in 𝑡 = 𝛥𝑡, 𝛼2(𝛥𝑡) represents the probability that a sam-
le of the fCm process starts its motion in 𝑡 = 𝛥𝑡, while �̃�𝐶𝛽

(𝑐𝛽 , 𝛥𝑡) rep-
esents the PDF of the samples that start their motion in the considered
ime instant, i.e. 𝑡 = 𝛥𝑡.

In 𝑡 = 2𝛥𝑡, the PDF of the fCM assumes the form

𝐶𝛽
(𝑐𝛽 , 2𝛥𝑡) = 𝛼1(2𝛥𝑡)𝛿(𝑐𝛽 ) + 𝛼2(𝛥𝑡)�̃�𝐶𝛽

(𝑐𝛽 , 2𝛥𝑡)+

(𝛼2(2𝛥𝑡) − 𝛼2(𝛥𝑡))�̃�𝐶𝛽
(𝑐𝛽 , 𝛥𝑡)

(36)

n which 𝛼1(2𝛥𝑡) represents the probability that a sample of the fCM
rocess is quiescent in 𝑡 = 2𝛥𝑡, (𝛼2(2𝛥𝑡) − 𝛼2(𝛥𝑡)) represents the proba-
ility that a sample of the fCM process starts its motion in 𝑡 = 2𝛥𝑡, while

�̃�𝐶𝛽
(𝑐𝛽 , 𝛥𝑡) and �̃�𝐶𝛽

(𝑐𝛽 , 2𝛥𝑡) represent the PDF of the samples that starts
heir motion, respectively, in the considered time instant, i.e. 𝑡 = 2𝛥𝑡,
nd in the time instant preceding the one considered, i.e. 𝑡 = 𝛥𝑡.
imilarly, in 𝑡 = 3𝛥𝑡, the PDF of the fCM can be expressed as

𝑝𝐶𝛽
(𝑐𝛽 , 3𝛥𝑡) = 𝛼1(3𝛥𝑡)𝛿(𝑐𝛽 ) + 𝛼2(𝛥𝑡)�̃�𝐶𝛽

(𝑐𝛽 , 3𝛥𝑡)+

𝛼2(2𝛥𝑡) − 𝛼2(𝛥𝑡))�̃�𝐶𝛽
(𝑐𝛽 , 2𝛥𝑡) + (𝛼2(3𝛥𝑡) − 𝛼2(2𝛥𝑡))�̃�𝐶𝛽

(𝑐𝛽 , 𝛥𝑡).
(37)

herefore, the proposed PDF of the fCM in a generic time instant 𝑡 = 𝑗𝛥𝑡
s obtained as

𝐶𝛽
(𝑐𝛽 , 𝑗𝛥𝑡) = 𝛼1(𝑗𝛥𝑡)𝛿(𝑐𝛽 )+

𝑗
∑

𝑢=1
(𝛼2(𝑢𝛥𝑡)−𝛼2((𝑢−1)𝛥𝑡))�̃�𝐶𝛽

(𝑐𝛽 , (𝑗−𝑢+1)𝛥𝑡).

(38)

n order to calculate the variance �̃�2𝐶𝛽
(𝑗𝛥𝑡) present in Eq. (33), it is

ossible to proceed with a similar reasoning to that already done
or 𝑝𝐶𝛽

(𝑐𝛽 , 𝑗𝛥𝑡). Specifically, by multiplying Eq. (35) for 𝑐2𝛽 and by
ntegrating between −∞ and ∞ with respect to 𝑐𝛽 , Eq. (35) becomes

2
𝐶𝛽
(𝛥𝑡) = 𝛼2(𝛥𝑡)�̃�2𝐶𝛽

(𝛥𝑡) (39)

nd thus

̃ 2𝐶𝛽
(𝛥𝑡) =

𝜎2𝐶𝛽
(𝛥𝑡)

𝛼2(𝛥𝑡)
. (40)

By multiplying Eq. (36) for 𝑐2𝛽 and by integrating between −∞ and ∞
with respect to 𝑐𝛽 , Eq. (36) becomes

𝜎2𝐶𝛽
(2𝛥𝑡) = 𝛼2(𝛥𝑡)�̃�2𝐶𝛽

(2𝛥𝑡) + (𝛼2(2𝛥𝑡) − 𝛼2(𝛥𝑡))�̃�2𝐶𝛽
(𝛥𝑡) (41)

and thus

̃ 2 (2𝛥𝑡) = 1 [

𝜎2 (2𝛥𝑡) − (𝛼2(2𝛥𝑡) − 𝛼2(𝛥𝑡))�̃�2 (𝛥𝑡)
]

. (42)
4

𝐶𝛽 𝛼2(𝛥𝑡) 𝐶𝛽 𝐶𝛽
Fig. 1. Comparison between the proposed PDF of fCM (𝑝𝐶𝛽
(𝑐𝛽 , 𝑡)) and the PDF

numerically calculated (𝑝𝑁𝑈𝑀
𝐶𝛽

(𝑐𝛽 , 𝑡)) for Gaussian distribution of 𝑌𝑘.

Finally, by multiplying Eq. (37) for 𝑐2𝛽 and by integrating between −∞
nd ∞ with respect to 𝑐𝛽 , Eq. (37) becomes
2
𝐶𝛽
(3𝛥𝑡) = 𝛼2(𝛥𝑡)�̃�2𝐶𝛽

(3𝛥𝑡) + (𝛼2(2𝛥𝑡) − 𝛼2(𝛥𝑡))�̃�2𝐶𝛽
(2𝛥𝑡)+

(𝛼2(3𝛥𝑡) − 𝛼2(2𝛥𝑡))�̃�2𝐶𝛽
(𝛥𝑡)

(43)

nd thus

̃ 2𝐶𝛽
(3𝛥𝑡) = 1

𝛼2(𝛥𝑡)
[

𝜎2𝐶𝛽
(3𝛥𝑡) − (𝛼2(2𝛥𝑡) − 𝛼2(𝛥𝑡))�̃�2𝐶𝛽

(2𝛥𝑡)−

(𝛼2(3𝛥𝑡) − 𝛼2(2𝛥𝑡))�̃�2𝐶𝛽
(𝛥𝑡)

]

.
(44)

herefore, the variance �̃�2𝐶𝛽
(𝑗𝛥𝑡) can be expressed as

�̃�2𝐶𝛽
(𝑗𝛥𝑡) = 1

𝛼2(𝛥𝑡)

[

𝜎2𝐶𝛽
(𝑗𝛥𝑡)−

𝑗

𝑢=2
(𝛼2(𝑢𝛥𝑡) − 𝛼2((𝑢 − 1)𝛥𝑡))�̃�2𝐶𝛽

((𝑗 − 𝑢 + 1)𝛥𝑡)
]

.
(45)

The same result reported in Eq. (45) can be obtained by multiplying
Eq. (38) for 𝑐2𝛽 and by integrating between −∞ and ∞ with respect
o 𝑐𝛽 . Furthermore, it is to be stressed that Eq. (38) remains valid

also from distributions of 𝑌𝑘 that are not Gaussian. In the latter case,
a Gaussian distribution of �̃�𝐶𝛽

(𝑐𝛽 , 𝑡) provides perfect results for time
instant sufficiently distant from zero but, in order to have a perfect
probabilistic representation also for time instants near to zero, �̃�𝐶𝛽

(𝑐𝛽 , 𝑡)
has to be properly defined in order to take into account the distribution
of 𝑌𝑘.

3.2. Numerical results

In order to assess the truthfulness of the proposed PDF of the fCM,
a Monte Carlo simulation has been performed considering a Gaussian
distribution of 𝑌𝑘. Specifically, a total of 105 samples of the process
𝐶𝛽 (𝑡) having a duration equal to 10 s discretized with a time sampling
step 𝛥𝑡 = 0.01 s have been generated considering 𝛽 = 1.25, 𝜆 = 1.44 and
𝐸[𝑌 2

𝑘 ] = 5.4289. For each time instant, the PDF of the fCM has been
numerically calculated and it has been compared with the proposed
PDF of fCM taking into account that, for numerical applications, 𝛿(0)
as to be substituted with 1∕𝛥𝑐𝛽 in Eq. (38) being 𝛥𝑐𝛽 = 0.1 the

sampling step of the domain 𝑐𝛽 . The results obtained are reported
in Fig. 1. From the results reported in Fig. 1, it is clear that the

proposed equation of the PDF perfectly matches the PDF obtained from
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Fig. 2. Kullback–Leibler divergence between the proposed PDF of fCM and the PDF
numerically calculated (Gaussian distribution of 𝑌𝑘).

the numerical results. An additional comparison has been performed
by calculating, for each considered time instant, the Kullback–Leibler
(KL) divergence (also called relative entropy) between the proposed
equation of the PDF and the PDF numerically calculated. It is a type
of statistical distance that is calculated in the form

𝐾𝐿(𝑡) =
∞
∑

𝑙=−∞
𝑝𝑁𝑈𝑀
𝑐𝛽

(𝑙𝛥𝑐𝛽 , 𝑡) ln

( 𝑝𝑁𝑈𝑀
𝑐𝛽

(𝑙𝛥𝑐𝛽 , 𝑡)

𝑝𝑐𝛽 (𝑙𝛥𝑐𝛽 , 𝑡)

)

(46)

eing 𝑝𝑁𝑈𝑀
𝑐𝛽

(𝑐𝛽 , 𝑡) the PDF numerically calculated. The results obtained
n terms of KL divergence are reported in Fig. 2. From Fig. 2 it is
lear that the KL divergence assumes very low values and thus the
roposed PDF of fCM gives a perfect statistical representation of the
esults numerically obtained.

In order to verify if the PDF of the fCM tends to a Gaussian dis-
ribution, a Gaussianity test has been performed by using the Kurtosis
oefficient. The latter is expressed as

𝐶 (𝑡) =

𝐸

[

(

𝐶𝛽 (𝑡) − 𝐸[𝐶𝛽 (𝑡)]
)4

]

𝜎4𝐶𝛽
(𝑡)

(47)

in which the numerator represents the fourth central moment that, in
this case (zero-mean process), coalesces with the fourth order moment.
If the Kurtosis coefficient is equal to three, then the distribution is
perfectly Gaussian. The results obtained in terms of Kurtosis coefficient
are reported in Fig. 3. From Fig. 3 it is clear that, as expected, the PDF
of fCM tends to be Gaussian for time instants sufficiently distant from
zero.

In order to assess the truthfulness of the proposed PDF of the fCM
also for distributions of 𝑌𝑘 different than Gaussian, a Monte Carlo
imulation has been performed considering 𝑌𝑘 uniformly distributed

between −3 and 3. Also in this case, a total of 105 samples of the
process 𝐶𝛽 (𝑡) having a duration equal to 10 s discretized with a time
sampling step 𝛥𝑡 = 0.01 s have been generated considering 𝛽 = 1.25
and 𝜆 = 1.44. The comparison between the proposed PDF of fCM
and the PDF numerically calculated is reported in Fig. 4 while the
Kullback–Leibler divergence between the proposed closed form of the
PDF and the PDF numerically calculated and the Kurtosis coefficient
5

are reported, respectively, in Figs. 5 and 6. a
Fig. 3. Kurtosis coefficient (Gaussian distribution of 𝑌𝑘).

Fig. 4. Comparison between the proposed PDF of fCM (𝑝𝐶𝛽
(𝑐𝛽 , 𝑡)) and the PDF

numerically calculated (𝑝𝑁𝑈𝑀
𝐶𝛽

(𝑐𝛽 , 𝑡)) for uniform distribution of 𝑌𝑘.

Fig. 5. Kullback–Leibler divergence between the proposed PDF of fCM and the PDF
numerically calculated (uniform distribution of 𝑌𝑘).

From Figs. 4 and 5 it is clear that, for time instants sufficiently
distant from zero, also in case of uniform distribution of 𝑌𝑘, the pro-
osed equation of the PDF perfectly matches the PDF obtained from
he numerical results while, for time instants near to zero, there is

little discrepancy between the proposed equation of the PDF and
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Fig. 6. Kurtosis coefficient (uniform distribution of 𝑌𝑘).

the PDF numerically calculated due to the fact that �̃�𝐶𝛽
(𝑐𝛽 , 𝑡) has been

approximated with a Gaussian distribution. From Fig. 6 it can be noted
that the PDF of the fCM, as expected, tends to be Gaussian for time
instants sufficiently distant from zero also for uniform distribution of
𝑌𝑘.

4. Remarks on weak self-similarity of fractional compound mo-
tion

As previously reported, fCM cannot be considered strongly self-
similar since the Hurst index changes with the order of statistics.
However, from the proposed PDF of fCM and from the results of
the numerical simulations performed, it is clear that the more the
time increases and the more the fCM tends to be a Gaussian process
fully described in probabilistic setting by its variance. Furthermore, by
comparing Eqs. (12) and (27), it can be observed that the variance of
the fCM is equal to the variance of a fBM having strength 𝑞(𝑡) = 𝜆𝐸[𝑌 2

𝑘 ]
∀𝑡 ≥ 0. Therefore, it can be stated that the more the time increases and
the more the fCM tends to revert into a fBM having the aforementioned
strength. Since the fBM is self-similar with Hurst index 𝐻 = 𝛽 − 1∕2, it
is clear that the more the time increases and the more the fCM tends
to become self-similar with Hurst index 𝐻 = 𝛽 − 1∕2. The time instant
starting from which fCM can be treated as a self-similar process strongly
depends on how quickly the Dirac’s delta function becomes negligible
in Eq. (38), i.e. on how quickly the modulating function 𝛼1(𝑡) tends to
zero. In Fig. 7 the modulating function 𝛼1(𝑡) is reported for different
values of 𝜆. From Fig. 7 it is clear that the larger 𝜆 is, the faster the
modulating function 𝛼1(𝑡) tends to zero and thus it can be stated that
the larger 𝜆 is, the faster fCM tends to revert into a self-similar process
with Hurst index 𝐻 = 𝛽 − 1∕2.

Weak self-similarity of fCM can therefore be used to overcome the
loss of Markovianity. In fact, starting from the statistics of the fCM
calculated in the time instant from which 𝛼1(𝑡) can be neglected, it
is possible to use the self-similarity in order to calculate the future
statistics of the fCM.

5. Concluding remarks

In this paper, a simple equation of the probability density function
of the fractional compound motion process has been proposed. The
proposed equation is composed by two different parts: the first one
is a Dirac’s delta function multiplied by a modulating function, while
the second one depends on the aforementioned modulating function
and on a probability density function in turn dependent on the distri-
bution of the spikes of the Poisson process. Two different numerical
simulations have been performed in order to assess the truthfulness
6

of the proposed equation and the results show that the proposed
Fig. 7. Modulating function 𝛼1(𝑡) for different values of 𝜆.

quation perfectly matches the probability density function numerically
alculated. Furthermore, it has been show that, after a time instant that
epends on the mean number of impulses per unit time, the fractional
ompound motion reverts into a fractional Brownian motion, i.e. it
ends to become a self-similar process with Hurst index 𝐻 = 𝛽 − 1∕2.

After the aforementioned time instant, the loss of Markovianity can be
overcomed by exploiting the advantages of the self-similar processes.
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