Let F be an algebraically closed field of characteristic zero and G a cyclic group of odd prime order. We consider the class of finite dimensional ⁎-algebras, namely G-graded algebras endowed with graded involution ⁎, and we characterize the varieties generated by algebras of this class which are minimal with respect to the ⁎-exponent.

Benanti, F., Di Vincenzo, O., Valenti, A. (2024). Minimal varieties of PI-algebras with graded involution. LINEAR ALGEBRA AND ITS APPLICATIONS, 699, 459-507 [10.1016/j.laa.2024.07.010].

Minimal varieties of PI-algebras with graded involution

Benanti, F. S.;Valenti, A.
2024-10-15

Abstract

Let F be an algebraically closed field of characteristic zero and G a cyclic group of odd prime order. We consider the class of finite dimensional ⁎-algebras, namely G-graded algebras endowed with graded involution ⁎, and we characterize the varieties generated by algebras of this class which are minimal with respect to the ⁎-exponent.
15-ott-2024
Benanti, F., Di Vincenzo, O., Valenti, A. (2024). Minimal varieties of PI-algebras with graded involution. LINEAR ALGEBRA AND ITS APPLICATIONS, 699, 459-507 [10.1016/j.laa.2024.07.010].
File in questo prodotto:
File Dimensione Formato  
online.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 765.13 kB
Formato Adobe PDF
765.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/653656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact