We study local and global higher integrability properties for quasiminimizers of a class of double phase integrals characterized by nonstandard growth conditions. We work purely on a variational level in the setting of a metric measure space with a doubling measure and a Poincaré inequality. The main novelty is an intrinsic approach to double phase Sobolev-Poincaré inequalities.

Kinnunen, J., Nastasi, A., Pacchiano Camacho, C. (2024). Gradient higher integrability for double phase problems on metric measure spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 152(3), 1233-1251 [10.1090/proc/16646].

Gradient higher integrability for double phase problems on metric measure spaces

Nastasi, Antonella
;
2024-03-01

Abstract

We study local and global higher integrability properties for quasiminimizers of a class of double phase integrals characterized by nonstandard growth conditions. We work purely on a variational level in the setting of a metric measure space with a doubling measure and a Poincaré inequality. The main novelty is an intrinsic approach to double phase Sobolev-Poincaré inequalities.
1-mar-2024
Settore MAT/05 - Analisi Matematica
Kinnunen, J., Nastasi, A., Pacchiano Camacho, C. (2024). Gradient higher integrability for double phase problems on metric measure spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 152(3), 1233-1251 [10.1090/proc/16646].
File in questo prodotto:
File Dimensione Formato  
S0002-9939-2024-16646-6.pdf

Solo gestori archvio

Descrizione: Il testo pieno dell’articolo è disponibile al seguente link: https://www.ams.org/journals/proc/2024-152-03/S0002-9939-2024-16646-6/home.html
Tipologia: Versione Editoriale
Dimensione 274.02 kB
Formato Adobe PDF
274.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2304.14858v3.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 254.54 kB
Formato Adobe PDF
254.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/639408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact