We study local and global higher integrability properties for quasiminimizers of a class of double phase integrals characterized by nonstandard growth conditions. We work purely on a variational level in the setting of a metric measure space with a doubling measure and a Poincaré inequality. The main novelty is an intrinsic approach to double phase Sobolev-Poincaré inequalities.
Kinnunen, J., Nastasi, A., Pacchiano Camacho, C. (2024). Gradient higher integrability for double phase problems on metric measure spaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 152(3), 1233-1251 [10.1090/proc/16646].
Gradient higher integrability for double phase problems on metric measure spaces
Nastasi, Antonella
;
2024-03-01
Abstract
We study local and global higher integrability properties for quasiminimizers of a class of double phase integrals characterized by nonstandard growth conditions. We work purely on a variational level in the setting of a metric measure space with a doubling measure and a Poincaré inequality. The main novelty is an intrinsic approach to double phase Sobolev-Poincaré inequalities.File | Dimensione | Formato | |
---|---|---|---|
S0002-9939-2024-16646-6.pdf
Solo gestori archvio
Descrizione: Il testo pieno dell’articolo è disponibile al seguente link: https://www.ams.org/journals/proc/2024-152-03/S0002-9939-2024-16646-6/home.html
Tipologia:
Versione Editoriale
Dimensione
274.02 kB
Formato
Adobe PDF
|
274.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2304.14858v3.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
254.54 kB
Formato
Adobe PDF
|
254.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.