This paper investigates different trade-offs between the number of model parameters and enhanced speech qualities by employing several deep tensor-to-vector regression models for speech enhancement. We find that a hybrid architecture, namely CNN-TT, is capable of maintaining a good quality performance with a reduced model parameter size. CNN-TT is composed of several convolutional layers at the bottom for feature extraction to improve speech quality and a tensor-train (TT) output layer on the top to reduce model parameters. We first derive a new upper bound on the generalization power of the convolutional neural network (CNN) based vector-to-vector regression models. Then, we provide experimental evidence on the Edinburgh noisy speech corpus to demonstrate that, in single-channel speech enhancement, CNN outperforms DNN at the expense of a small increment of model sizes. Besides, CNN-TT slightly outperforms the CNN counterpart by utilizing only 32% of the CNN model parameters. Besides, further performance improvement can be attained if the number of CNN-TT parameters is increased to 44% of the CNN model size. Finally, our experiments of multi-channel speech enhancement on a simulated noisy WSJ0 corpus demonstrate that our proposed hybrid CNN-TT architecture achieves better results than both DNN and CNN models in terms of better-enhanced speech qualities and smaller parameter sizes.
Qi, J., Hu, H.u., Wang, Y., Yang, C.H., Siniscalchi, S.M., Lee, C. (2020). Exploring Deep Hybrid Tensor-to-Vector Network Architectures for Regression Based Speech Enhancement. In INTERSPEECH 2020 (pp. 76-80) [10.21437/Interspeech.2020-1900].
Exploring Deep Hybrid Tensor-to-Vector Network Architectures for Regression Based Speech Enhancement
Siniscalchi, Sabato MarcoCo-ultimo
Supervision
;
2020-01-01
Abstract
This paper investigates different trade-offs between the number of model parameters and enhanced speech qualities by employing several deep tensor-to-vector regression models for speech enhancement. We find that a hybrid architecture, namely CNN-TT, is capable of maintaining a good quality performance with a reduced model parameter size. CNN-TT is composed of several convolutional layers at the bottom for feature extraction to improve speech quality and a tensor-train (TT) output layer on the top to reduce model parameters. We first derive a new upper bound on the generalization power of the convolutional neural network (CNN) based vector-to-vector regression models. Then, we provide experimental evidence on the Edinburgh noisy speech corpus to demonstrate that, in single-channel speech enhancement, CNN outperforms DNN at the expense of a small increment of model sizes. Besides, CNN-TT slightly outperforms the CNN counterpart by utilizing only 32% of the CNN model parameters. Besides, further performance improvement can be attained if the number of CNN-TT parameters is increased to 44% of the CNN model size. Finally, our experiments of multi-channel speech enhancement on a simulated noisy WSJ0 corpus demonstrate that our proposed hybrid CNN-TT architecture achieves better results than both DNN and CNN models in terms of better-enhanced speech qualities and smaller parameter sizes.File | Dimensione | Formato | |
---|---|---|---|
1900.pdf
Solo gestori archvio
Descrizione: Il testo pieno dell’articolo è disponibile al seguente link: https://www.isca-archive.org/interspeech_2020/qi20_interspeech.html
Tipologia:
Versione Editoriale
Dimensione
969.64 kB
Formato
Adobe PDF
|
969.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.