We propose using an adversarial autoencoder (AAE) to replace generative adversarial network (GAN) in private aggregation of teacher ensembles (PATE), a solution for ensuring differential privacy in speech applications. The AAE architecture allows us to obtain good synthetic speech leveraging upon a discriminative training of latent vectors. Such synthetic speech is used to build a privacy-preserving classifier when non-sensitive data is not sufficiently available in the public domain. This classifier follows the PATE scheme that uses an ensemble of noisy outputs to label the synthetic samples and guarantee ε-differential privacy (DP) on its derived classifiers. Our proposed framework thus consists of an AAE-based generator and a PATE-based classifier (PATE-AAE). Evaluated on the Google Speech Commands Dataset Version II, the proposed PATE-AAE improves the average classification accuracy by +2.11% and +6.60%, respectively, when compared with alternative privacy-preserving solutions, namely PATE-GAN and DP-GAN, while maintaining a strong level of privacy target at ε=0.01 with a fixed δ=10−5
Yang, C.H., Siniscalchi, S.M., Lee, C. (2021). PATE-AAE: Incorporating Adversarial Autoencoder into Private Aggregation of Teacher Ensembles for Spoken Command Classification. In INTERSPEECH 2021 (pp. 881-885) [10.21437/Interspeech.2021-640].
PATE-AAE: Incorporating Adversarial Autoencoder into Private Aggregation of Teacher Ensembles for Spoken Command Classification
Siniscalchi, Sabato MarcoCo-primo
Supervision
;
2021-01-01
Abstract
We propose using an adversarial autoencoder (AAE) to replace generative adversarial network (GAN) in private aggregation of teacher ensembles (PATE), a solution for ensuring differential privacy in speech applications. The AAE architecture allows us to obtain good synthetic speech leveraging upon a discriminative training of latent vectors. Such synthetic speech is used to build a privacy-preserving classifier when non-sensitive data is not sufficiently available in the public domain. This classifier follows the PATE scheme that uses an ensemble of noisy outputs to label the synthetic samples and guarantee ε-differential privacy (DP) on its derived classifiers. Our proposed framework thus consists of an AAE-based generator and a PATE-based classifier (PATE-AAE). Evaluated on the Google Speech Commands Dataset Version II, the proposed PATE-AAE improves the average classification accuracy by +2.11% and +6.60%, respectively, when compared with alternative privacy-preserving solutions, namely PATE-GAN and DP-GAN, while maintaining a strong level of privacy target at ε=0.01 with a fixed δ=10−5File | Dimensione | Formato | |
---|---|---|---|
yang21_interspeech.pdf
Solo gestori archvio
Descrizione: Il testo pieno dell’articolo è disponibile al seguente link: https://www.isca-archive.org/interspeech_2021/yang21_interspeech.html
Tipologia:
Versione Editoriale
Dimensione
495.52 kB
Formato
Adobe PDF
|
495.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.