Ordinary calculus is usually inapplicable to fractal sets. In this chapter, we introduce and describe the various approaches made so far to define the theory of derivation and integration on fractal sets. In particular, we study some Riemann-type integrals (the s-Riemann integral, the sHK integral, the s-first-return integral) defined on a closed fractal subset of the real line with finite and positive s-dimensional Hausdorff measure (s-set) with particular attention to the Fundamental Theorem of Calculus. Moreover, we pay attention to the relation between the s-Riemann integral, the sHK integral, and the Lebesgue integral with respect to the Hausdorff measure ℋs, respectively, and we give a characterization of the primitives of the sHK integral.

Donatella Bongiorno (2024). Derivation and Integration on a Fractal Subset of the Real Line. In Dr. Sid-Ali Ouadfeul (a cura di), Fractal Analysis-Applications and Updates (pp. 24-43). Londra : IntechOpenh [10.5772/intechopen.1001895].

### Derivation and Integration on a Fractal Subset of the Real Line

#### Abstract

Ordinary calculus is usually inapplicable to fractal sets. In this chapter, we introduce and describe the various approaches made so far to define the theory of derivation and integration on fractal sets. In particular, we study some Riemann-type integrals (the s-Riemann integral, the sHK integral, the s-first-return integral) defined on a closed fractal subset of the real line with finite and positive s-dimensional Hausdorff measure (s-set) with particular attention to the Fundamental Theorem of Calculus. Moreover, we pay attention to the relation between the s-Riemann integral, the sHK integral, and the Lebesgue integral with respect to the Hausdorff measure ℋs, respectively, and we give a characterization of the primitives of the sHK integral.
##### Scheda breve Scheda completa Scheda completa (DC)
24-apr-2024
Settore MAT/05 - Analisi Matematica
Donatella Bongiorno (2024). Derivation and Integration on a Fractal Subset of the Real Line. In Dr. Sid-Ali Ouadfeul (a cura di), Fractal Analysis-Applications and Updates (pp. 24-43). Londra : IntechOpenh [10.5772/intechopen.1001895].
File in questo prodotto:
File
1137655.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 332.55 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/10447/635914`