This paper aims to enhance the inference for spatial point processes' intensity function when complex interactions among points play a crucial role. We exploit local characteristics into the inferential procedure of maximising a regularised Poisson likelihood, penalised by the degree of interaction among points. The experiments conducted emphasize the importance of local second-order characteristics in improving inference for complex spatial point processes.

Nicoletta D'Angelo, Giada Adelfio, Jorge Mateu, Ottmar Cronie (2024). Constructed functional marks for spatial point process intensity estimation. In Book of Abstracts of SIS 2024.

Constructed functional marks for spatial point process intensity estimation

Nicoletta D'Angelo
;
Giada Adelfio;
2024-01-01

Abstract

This paper aims to enhance the inference for spatial point processes' intensity function when complex interactions among points play a crucial role. We exploit local characteristics into the inferential procedure of maximising a regularised Poisson likelihood, penalised by the degree of interaction among points. The experiments conducted emphasize the importance of local second-order characteristics in improving inference for complex spatial point processes.
2024
Nicoletta D'Angelo, Giada Adelfio, Jorge Mateu, Ottmar Cronie (2024). Constructed functional marks for spatial point process intensity estimation. In Book of Abstracts of SIS 2024.
File in questo prodotto:
File Dimensione Formato  
2024_SIS_DAngelo_et_al (1).pdf

Solo gestori archvio

Descrizione: Contributo completo
Tipologia: Versione Editoriale
Dimensione 254.01 kB
Formato Adobe PDF
254.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/632673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact