A topological space X is selectively highly divergent (SHD) if for every sequence of non-empty open sets { U_n : n ∈ ω } of X, we can find x_n ∈ Un such that the sequence {x_n : n ∈ ω } has no convergent subsequences. In this note we answer two questions related to this notion asked by Jiménez-Flores, Ríos-Herrejón, Rojas-Sánchez and Tovar-Acosta.

Angelo Bella, Santi Spadaro (2024). On some questions on selectively highly divergent spaces. APPLIED GENERAL TOPOLOGY, 25(1), 41-46 [10.4995/agt.2024.20387].

On some questions on selectively highly divergent spaces

Angelo Bella;Santi Spadaro
2024-04-02

Abstract

A topological space X is selectively highly divergent (SHD) if for every sequence of non-empty open sets { U_n : n ∈ ω } of X, we can find x_n ∈ Un such that the sequence {x_n : n ∈ ω } has no convergent subsequences. In this note we answer two questions related to this notion asked by Jiménez-Flores, Ríos-Herrejón, Rojas-Sánchez and Tovar-Acosta.
2-apr-2024
Angelo Bella, Santi Spadaro (2024). On some questions on selectively highly divergent spaces. APPLIED GENERAL TOPOLOGY, 25(1), 41-46 [10.4995/agt.2024.20387].
File in questo prodotto:
File Dimensione Formato  
SHDFinal.pdf

Solo gestori archvio

Tipologia: Pre-print
Dimensione 114.1 kB
Formato Adobe PDF
114.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
On some questions on selectively highlydivergent spaces.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 345.62 kB
Formato Adobe PDF
345.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/631613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact