A topological space X is selectively highly divergent (SHD) if for every sequence of non-empty open sets { U_n : n ∈ ω } of X, we can find x_n ∈ Un such that the sequence {x_n : n ∈ ω } has no convergent subsequences. In this note we answer two questions related to this notion asked by Jiménez-Flores, Ríos-Herrejón, Rojas-Sánchez and Tovar-Acosta.
Angelo Bella, Santi Spadaro (2024). On some questions on selectively highly divergent spaces. APPLIED GENERAL TOPOLOGY, 25(1), 41-46 [10.4995/agt.2024.20387].
On some questions on selectively highly divergent spaces
Angelo Bella;Santi Spadaro
2024-04-02
Abstract
A topological space X is selectively highly divergent (SHD) if for every sequence of non-empty open sets { U_n : n ∈ ω } of X, we can find x_n ∈ Un such that the sequence {x_n : n ∈ ω } has no convergent subsequences. In this note we answer two questions related to this notion asked by Jiménez-Flores, Ríos-Herrejón, Rojas-Sánchez and Tovar-Acosta.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SHDFinal.pdf
Solo gestori archvio
Tipologia:
Pre-print
Dimensione
114.1 kB
Formato
Adobe PDF
|
114.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
On some questions on selectively highlydivergent spaces.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
345.62 kB
Formato
Adobe PDF
|
345.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.