

On some questions on selectively highly divergent spaces

Angelo Bella ^a and Santi Spadaro ^b ©

- a Dipartimento di Matematica e Informatica, Università di Catania, viale A. Doria 6, 95125 Catania, Italy (bella@dmi.unict.it)
- b Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy (santidomenico.spadaro@unipa.it)

Communicated by S. García-Ferreira

Abstract

A topological space X is selectively highly divergent (SHD) if for every sequence of non-empty open sets $\{U_n : n \in \omega\}$ of X, we can find points $x_n \in U_n$, for every $n < \omega$ such that the sequence $\{x_n : n \in \omega\}$ has no convergent subsequences. In this note we answer four questions related to this notion that were asked by Jiménez-Flores, Ríos-Herrejón, Rojas-Sánchez and Tovar-Acosta.

2020 MSC: 54A20; 54A25; 54B20; 54D35; 03E17.

KEYWORDS: convergent sequence; splitting number; Stone-Cech compactification; selectively highly divergent space; Pixley-Roy hyperspace.

1. Introduction

In this note we consider a class of spaces recently studied in [4].

Definition 1.1. A topological space X is selectively highly divergent (SHD from here for short) if for every sequence of non-empty open subsets $\{U_n : n < \omega\}$ of X, we can find $x_n \in U_n$ such that the sequence $\{x_n : n < \omega\}$ has no convergent subsequence.

Clearly, if a topological space X has a point of countable character, then it cannot be SHD, in particular no metrizable space is SHD.

Nice examples of SHD spaces are the compact Hausdorff space $\omega^* = \beta \omega \setminus \omega$ and the countable regular maximal space M described in [1]. These spaces however are strictly stronger than SHD because they do not contain non-trivial convergent sequences. In general, a selectively highly divergent space may have plenty of convergent sequences: a compact Hausdorff space of this kind is $\omega^* \times I$, while a countable regular one is $M \times \mathbb{Q}$.

The property of being selectively highly divergent is much stronger than being not sequentially compact. An easy example of non-sequentially compact space which is not SHD is the space $Z = \omega^* \oplus I$. Note that the space Z has an open subset which is sequentially compact, and one may suspect that a space having no non-empty open sequentially compact subspace should be SHD, but this is not the case.

Example 1.2. A compact Hausdorff space with no non-empty sequentially compact subspace which is not SHD.

Proof. Let $X = (\omega^* \times \omega) \cup \{p\}$, where $\omega^* \times \omega$ with the product topology is an open subspace of X, while a local base at p is the collection $\{(\omega^* \times [n, \omega]) \cup \{p\} :$ $n < \omega$.

If in Definition 1.1 we consider only constant sequences of open sets, i.e. $U_n = U$ for each $n < \omega$, then we see that a SHD space has the property that every non-empty open set contains a sequence with no subsequences converging in X. We may call a space with this property highly divergent (HD for short). Using this terminology, Example 1.2 provides an example of a compact Hausdorff HD space which is not SHD.

In [4] the authors formulated various questions about selectively highly divergent spaces. In our paper we will focus on four of them.

Question 1.3 ([4, Question 2]). Is it true that if κ is an uncountable cardinal, then $X = \{0, 1\}^{\kappa}$ is a SHD space?

Question 1.4 ([4, Question 4]). If X is Tychonoff, non-compact and SHD, does it hold that βX is SHD?

Question 1.5 ([4, Question 5]). Is the SHD property dense hereditary?

Given a space X, let $\mathcal{F}[X]$ denote the Pixley-Roy hyperspace of X.

Question 1.6 ([4, Question 7]). Is $\mathcal{F}[X]$ SHD whenever X is SHD and T_1 ?

In the present note, we give a complete answer to Questions 1.3, 1.5 and 1.6 and a partial positive answer to Question 1.4.

All spaces are assumed to be T_1 . For undefined notions, we refer the reader to [3] and [5].

2. The main results

We begin by presenting a complete answer to Question 1.3.

Recall that a collection S of subsets of ω is a splitting family if for every infinite subset $A \subseteq \omega$ there is an element $S \in S$ satisfying $|S \cap A| = |A \setminus S| = \omega$. The smallest cardinality of a splitting family on ω is the splitting number \mathfrak{s} . It turns out that $\omega_1 \leq \mathfrak{s} \leq \mathfrak{c}$.

Theorem 2.1. The space 2^{κ} is selectively highly divergent if and only if $\kappa \geq \mathfrak{s}$.

Proof. If $\kappa < \mathfrak{s}$, then 2^{κ} is sequentially compact (see [2], Theorem 6.1). So, if 2^{κ} is SHD, then we should have $\kappa \geq \mathfrak{s}$. To complete the proof, we need to show that $\kappa \geq \mathfrak{s}$ implies that 2^{κ} is SHD. Since 2^{κ} is homeomorphic to $2^{\mathfrak{s}} \times 2^{\kappa}$, taking into account that any product having a SHD factor is SHD (see Theorem 1 in [4]), it suffices to prove that $2^{\mathfrak{s}}$ is selectively highly divergent.

Let \mathcal{S} be a splitting family on ω of size \mathfrak{s} and fix an indexing $\mathcal{S} = \{S_{\alpha} : \alpha < \mathfrak{s}\}$ in such a way that every element of \mathcal{S} appears in the list \mathfrak{s} -many times.

Recall that a base for the topology of 2^{κ} consists of the sets $[\sigma]$, where $\sigma \in Fin(\kappa, 2)$ is a partial function whose domain is a finite subset of κ and $[\sigma] = \{x \in 2^{\kappa} : \sigma \subseteq x\}$. Let $\{U_n : n < \omega\}$ be a family of non-empty open subsets of $2^{\mathfrak{s}}$ and for each n choose a partial function $\sigma_n : \mathfrak{s} \to 2$ such that $[\sigma_n] \subseteq U_n$.

For each n let $x_n \in 2^{\mathfrak{s}}$ be the point defined as follows. If $\alpha \in dom(\sigma_n)$, then let $x_n(\alpha) = \sigma_n(\alpha)$; if $\alpha \in \mathfrak{s} \setminus dom(\sigma_n)$, then let $x_n(\alpha) = 1$ when $n \in S_\alpha$ and $x_n(\alpha) = 0$ when $n \notin S_\alpha$. Of course, we have $x_n \in [\sigma_n] \subseteq U_n$.

We claim that the sequence $\{x_n:n<\omega\}$ does not have convergent subsequences. Assume by contradiction that the subsequence $\{x_n:n\in A\}$ converges to a point p. Since the family $\mathcal S$ is splitting, there exists $S\in \mathcal S$ such that $|A\cap S|=|A\setminus S|=\omega$. Since the set $\bigcup \{dom(\sigma_n):n<\omega\}$ is countable and S appears in the list $\{S_\alpha:\alpha<\mathfrak s\}$ $\mathfrak s$ -many times, we may find $\gamma\in\mathfrak s\setminus\bigcup\{dom(\sigma_n):n\in\omega\}$ such that $S_\gamma=S$. Now, since the sequence $\{x_n:n\in A\cap S\}$ converges to p and $x_n(\gamma)=1$ for each $n\in A\cap S$, we must have $p(\gamma)=1$. But even the sequence $\{x_n:n\in A\setminus S\}$ converges to p and hence we must also have $p(\gamma)=0$. As this is a contradiction, the proof is complete.

Theorem 2.1 will help us answer Question 1.5 in the negative.

Example 2.2. A compact Hausdorff SHD space with a dense subspace which is not SHD.

Proof. Let $X = 2^{\mathfrak{c}}$. Theorem 2.1 sais that X is selectively highly divergent. Let Y be the Σ -product of $2^{\mathfrak{c}}$, that is $Y = \{x \in X : |x^{-1}(1)| \leq \omega\}$, with the topology induced from X. Then Y is a dense subset of X: Since in Y every countable set is contained in a copy of the Cantor set, we immediately see that Y is sequentially compact. Thus, Y is a dense subspace of X which is not selectively highly divergent.

We now give a partial answer to Question 1.4. Recall that a set $A \subseteq X$ is C^* -embedded in X if every bounded real valued continuous function defined on A can be continuously extented to the whole of X. The Tietze-Urysohn theorem implies that every closed subspace of a normal space is C^* -embedded.

Theorem 2.3. Let X be a Tychonoff SHD space. If every closed copy of the discrete space ω is C^* - embedded, then βX is SHD.

Proof. Let $\{U_n : n < \omega\}$ be a sequence of non-empty open sets of βX . Since X is SHD, we may pick points $x_n \in U_n \cap X$ in such a way that $\{x_n : n < \omega\}$ does not have subsequences which are convergent in X. We claim that $\{x_n : n < \omega\}$ does not have convergent subsequences even in βX .

Assume by contradiction that the sequence $\{x_n : n \in A\}$ converges to a point $p \in \beta X$. Clearly, we should have $p \in \beta X \setminus X$. But then, the set $\{x_n : n \in A\}$ is closed and discrete in X. Split A in the union of two infinite subsets B and C and define $f: \{x_n : n \in A\} \to [0,1]$ by letting $f(x_n) = 0$ in $n \in B$ and $f(x_n)=1$ if $n\in C$. Since the set $\{x_n:n\in A\}$ is C^* - embedded, we may continuously extend f to a function $f:X\to [0,1]$. The next step is to extend fto a continuous function $g: \beta X \to [0,1]$. Since $\{x_n : n \in A\}$ converges to p, we should have $g(p) \in \{g(x_n) : n \in B\} = \{f(x_n) : n \in B\} = \{0\}$, i. e. g(p) = 0. The same argument shows that $g(p) \in \overline{\{f(x_n) : n \in C\}} = \{1\}$, i. e. g(p) = 1. As this is a contradiction, the proof is complete.

We may mention a couple of corollaries.

Corollary 2.4. If X is a normal SHD space, then βX is SHD.

Corollary 2.5. If X is a countable Tychonoff SHD space, then βX is SHD.

So, we see that βM is SHD.

Example 2.2 already shows that the HD property is not dense hereditary. We now describe another example which involves the Cech-Stone compactification. Let us consider the space $\beta \mathbb{Q}$. It is clear that \mathbb{Q} is dense and far to be highly divergent. We check that $\beta \mathbb{Q}$ is HD. To this end, let U be a non-empty open subset of $\beta \mathbb{Q}$ and take a non-empty open set V such that $\overline{V} \subseteq U$. The set $V \cap \mathbb{Q}$ contains a closed copy A of the discrete space ω . Since A is C^* -embedded in \mathbb{O} , we have that $A \subseteq U$ is homeomorphic to $\beta \omega$ and so every non-trivial sequence in $\overline{A} \subseteq U$ has no convergent subsequences in $\beta \mathbb{Q}$.

Notice that $\beta \mathbb{Q}$ is not SHD because it is first countable at each point $q \in \mathbb{Q}$. So, $\beta \mathbb{O}$ is another compact Hausdorff HD space which is not SHD. However, the space X given in Example 1.2 is of different nature because every dense set D of X is highly divergent. To check this, let U be a non-empty open set in the subspace D and fix an open set V of X such that $U = V \cap D$. There is some $n \in \omega$ such that $V \cap \omega^* \times \{n\} \neq \emptyset$ and so even $V \cap \omega^* \times \{n\} \cap D =$ $U \cap \omega^* \times \{n\} \neq \emptyset$. Since the latter set is infinite, we may fix an infinite set $\{x_n:n<\omega\}$ in it. $\{x_n:n<\omega\}$ is a sequence in U with no subsequences converging in $\omega^* \times \{n\}$ and so a fortiori in D.

We finish by giving a complete answer to Question 1.6. Given a space X, the Pixley-Roy topology on X is the space $\mathcal{F}[X] = [X]^{<\omega}$ equipped with the topology generated by sets of the form $[F,U] = \{G \in \mathcal{F}(X) : F \subset G \subset U\},\$ where F is a finite subset of X and U is an open subset of X.

The authors of [4] proved that if X is an SHD space whose every countable subset is closed and discrete (this hypothesis is verified, in particular if X is a P-space), then $\mathcal{F}[X]$ is also SHD, and asked whether this is true in general.

Theorem 2.6. Let X be any SHD space. Then $\mathcal{F}[X]$ is also SHD.

Proof. Let \mathcal{U} be a countable sequence of non-empty open subsets of $\mathcal{F}[X]$. Without loss of generality we can assume that \mathcal{U} is made up of basic open sets and thus we can enumerate \mathcal{U} as $\{[F_n, U_n] : n < \omega\}$, where $F_n \in \mathcal{F}[X]$ and U_n is a non-empty open subset of X. By the SHD property of X we can pick a point $x_n \in U_n$, for every $n < \omega$ such that $\{x_n : n < \omega\}$ has no converging subsequence. Define $G_n = F_n \cup \{x_n\}$. Then $G_n \in [F_n, U_n]$, for every $n < \omega$. We claim that $\{G_n : n < \omega\}$ has no converging subsequence. Suppose that this is not the case and let $\{G_{n_k}: k < \omega\}$ be a subsequence converging to some point $G \in \mathcal{F}[X]$. That induces a subsequence $\{x_{n_k} : k < \omega\}$ of $\{x_n : n < \omega\}$ in the space X. Moreover, fix an enumeration $\{y_i : 1 \le i \le p\}$ of the set G.

Since $S_0 = \{x_{n_k} : k < \omega\}$ does not converge to y_1 then there are an infinite subset S_1 of S_0 and an open neighbourhood U_1 of y_1 such that $U_1 \cap S_1 = \emptyset$. Now, since S_1 does not converge to y_2 , there are an infinite subset S_2 of S_1 and an open neighbourhood U_2 of y_2 such that $U_2 \cap S_2 = \emptyset$. Continuing in this way we can construct a decreasing sequence of infinite sets $\{S_i : 0 \le i \le p\}$ and a sequence of open sets $\{U_i: 1 \leq i \leq p\}$ such that $y_i \in U_i$ and $U_i \cap S_i = \emptyset$, for every $i \in \{1, \ldots, p\}$.

Notice that $U = \bigcup \{U_i : 1 \leq i \leq p\}$ is an open set which contains G and is disjoint from S_p . It follows that the set [G,U] is an open neighbourhood of G in the Pixley-Roy topology which does not contain a tail of the sequence $\{G_{n_k}: k < \omega\}$ and that is a contradiction.

ACKNOWLEDGEMENTS. Both authors were partially supported by the GN-SAGA group of INdAM. In addition to that, the first named author was supported by a grant from "Progetto PIACERI, linea intervento 2" of the University of Catania and the second-named author was supported by a grant from the "Fondo Finalizzato alla Ricerca di Ateneo" (FFR 2023) of the University of Palermo.

References

- [1] E. K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), 125–
- [2] E. K. van Douwen, The Integers and Topology, Handbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan Editors), Elsevier Science Publishers B.V., Amsterdam (1984), 111-167.

A. Bella and S. Spadaro

- [3] R. Engelking, General Topology, Sigma Series in Pure Mathematics 6 Berlin: Heldermann Verlag, 1989.
- [4] C. D. Jiménez-Flores, A. Ríos-Herrejón, A. D. Rojas-Sánchez and E. E. Tovar-Acosta, On selectively highly divergent spaces, ArXiv:2307.11992.
- [5] K. Kunen, Set Theory, Studies in Logic (London) 34. London: College Publications viii, 401 p. (2011).