The purpose of this work is to analyze an integral of the s-Riemann type, where the gauge is a positive constant but the points involved in the s-Riemann sums are not randomly chosen. We demonstrate that, under this novel approach, every H^s- Lebesgue integrable function is integrable.
Donatella Bongiorno, Giuseppina Barbieri, Alireza Khalili Golmankhaneh (2024). An s-first return examination on s-sets. THE JOURNAL OF ANALYSIS, 32, 1619-1635 [10.1007/s41478-023-00707-y].
An s-first return examination on s-sets
Donatella Bongiorno
Primo
;
2024-01-23
Abstract
The purpose of this work is to analyze an integral of the s-Riemann type, where the gauge is a positive constant but the points involved in the s-Riemann sums are not randomly chosen. We demonstrate that, under this novel approach, every H^s- Lebesgue integrable function is integrable.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s41478-023-00707-y.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
296.88 kB
Formato
Adobe PDF
|
296.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.