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Abstract
The purpose of this work is to analyze an integral of the s-Riemann type, where the
gauge is a positive constant but the points involved in the s-Riemann sums are not
randomly chosen. We demonstrate that, under this novel approach, every Hs-
Lebesgue integrable function is integrable.
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1 Introduction

Shapes having self-similar qualities that have complex and fractional number
dimensions and a topological dimension smaller than their fractal dimension are
explained by fractal geometry [1, 2]. Conventional metrics, which are normally
applied to Euclidean geometric shapes, such as length, surface area, and volume,
prove insufficient for fractal analysis because fractals have unique measurements,
such as the Hausdorff measure [3, 4].

Fractals are known to be able to replicate a wide range of naturally occurring
structures, but they are also frequently too irregular to have a smooth differentiable
structure defined on them and ordinary calculus is usually inapplicable to them.
Consequently, fractal analysis has been studied by many scholars using a variety of
techniques. These include measure theory [5–13], fractional space [14], fractional
calculus [15, 16], unconventional techniques [17], and fractal calculus [18, 19]. The
integral on fractal manifolds was defined by extending the variable substitution
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theorem from Riemann integration to integrals on fractal sets [20, 21]. A numerical
methods for solving partial differential equations on fractals was presented. It covers
both strong and weak forms of the equations, including the Dirichlet problem in the
Sierpinski triangle and a non-planar Hata tree [22]. Fractal calculus is the result of
extending standard calculus to fractal sets in order to include differential equations
whose solutions take the form of functions with fractal support, such as fractal sets
and curves [23–26]. More precisely, the difference from the measure theory approach
and the fractal calculus lies in the use of the Hausdorff measure and in the use of the
mass function instead of the classical distance, respectively. Let us notice that the
mass function differs, from the Hausdorff measure, by a multiplicative factor
1=Cðsþ 1Þ and by the use of finite subdvisions (see [18, Definition 3] and [27]). This
allowed Fractal calculus to be used in various real-life problems, such as, for istance,
modeling tumor growth and providing a double-size cancer relation with fractal
temporal dimension [28]. Moreover, thin Cantor-like sets were employed for the
derivation of fractional Brownian motion using non-local fractal derivatives.
Furthermore, another field of applications of Fractal calculus is “non-classical
Stochastic Analysis”, where stochastic differential equations are driven by fractal
processes, so the processes are not semimartingales and there are in this situation no
integrals of Itô -type available. In 1951 Hurst used stochastic processes to describe
the long-term storage capacity in reservoirs (see [29]) and he introduced a parameter
H, that in honour of Hurst was called Hurst parameter. A connection with the fractal
Hurst parameter was established in [30]. Fractal random variables and their
associated distribution functions and statistical properties were explored. The
integration of fractal calculus with probability theory was utilized to define Shannon
entropy on fractal thin Cantor-like sets [31]. The noise characteristics of electrical
circuits were explored through the utilization of nonlocal fractal calculus. A
foundation for understanding noise behaviors in fractal non-local calculus electrical
circuits was established, demonstrating broad applicability across various large-scale
configurations [32]. The constitutive relations of the resistor and inductor were
reformulated following the novel capacitor relation. Fractal calculus and Laplace
transformation were applied to derive responses for RL, RC, LC, and RLC circuits
on the described fractal set [33]. Random walks on fractal middle-n Cantor sets were
suggested, and the presentation of corresponding power-law variances was
accompanied by the solution of a fractal stochastic differential equation [34].

In this paper we deal with self-similar fractal compact subsets of the real line with
finite and positive s-dimensional Hausdorff measure, briefly called s-sets, (0\s\1).
Moreover, since for compact sets, any open covers, and in particular countable open
covers can be replaced by finite subcovers it follows that the mass function and the
Hausdorff measure are proportional (see [18, Theorem 18]). So we denote by s-
Riemann integral the Riemann type integral on an s-set of the real line defined,
independently and equivalently, by Jiang–Su [7] and Parvate–Gangal [18]. Both
authors demonstrate that the main properties of the Riemann integral as well as the
Fundamental Theorem of Calculus are still valid for the s-Riemann integral.
However, as the best version of the Fundamental Theorem of Calculus is given on
the real line by Henstock–Kurzweil integral, in [10, 11] Bongiorno and Corrao
extended the s-Riemann integration process to the Henstok–Kurzweil integration
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process by introducing an integral to real functions defined on s-sets with 0\s\1
named s-HK integral that was indipendently defined by Golmankhaneh and Baleanu
in [35]. This integral allowed Bongiorno–Corrao to provide the best formulation of
the Fundamental Theorem of Calculus on fractal subsets of the real line in terms of
the following theorem.

Theorem 1 If F is a real function defined on a closed s-set E of the real line, with
0\s\1, such that the series

P1
j¼1 ðFðbjÞ � FðajÞÞ is absolutely convergent and

such that

1. F 0
sðxÞ exists at each point x 2 E or

2. F 0
sðxÞ exists at Hs-almost each point x 2 E and F is Hs-ACGd on E, then F

0
s is s-

HK integrable on E with

ðHKÞ
Z
E\½a;b�

F
0
s dH

s ¼ FðbÞ � FðaÞ �
X1
j¼1

ðFðbjÞ � FðajÞÞ;

where fðaj; bjÞgj2N is the sequence of all contiguous intervals of E.

Moreover, they proved that for the s-HK integrability of F 0
s and for the validity of

some formulation of the Fundamental Theorem of Calculus, the absolute conver-
gence of the series

P1
j¼1 ðFðbjÞ � FðajÞÞ is a necessary condition.

The peculiarity of the s-HK integral, with respect to the s-Riemann integral, is that
the s-HK integral allows to neglect the value of the s-Riemann sums related to some
partitions containing ”big” intervals in proximity of “very bad” points.

Let us remind that, given a function f : E ! R and a finite collection P ¼
fðeAi; xiÞgpi¼1 of E-intervals eAi and points xi 2 eAi; i ¼ 1; 2; . . .; p, the sum

Sðf ;PÞ ¼
Xp
i¼1

f ðxiÞHsðeAiÞ;

where Hs is the s-dimensional Hausdorff measure, is called the s-Riemann sum of f
related to the partition P.

Therefore, the difference between the s-HK integral and the s-Riemann integral is
due to the use of those s-Riemann sums in their definitions.

In fact, while the s-Riemann integral involves the s-Riemann sums related to all

partitions fðeAi; xiÞgpi¼1 withH
sðeAiÞ\d, i ¼ 1; 2; . . .; p, for some appropriate constant

d[ 0, and for each choice of points xi inside eAi, i ¼ 1; 2; . . .; p; the s-HK integral

involves the s-Riemann sums related to all partitions fðeAi; xiÞgpi¼1 satisfying the

condition HsðeAiÞ\dðxiÞ, i ¼ 1; 2; . . .; p, for some appropriate gauge d : E ! Rþ,
and for the correspondent choice of points xi inside eAi, i ¼ 1; 2; . . .; p.

About this, remark that, if f is an s-HK integrable function but it is not s-Riemann
integrable, then inf x2E dðxÞ ¼ 0, for each gauge d : E ! Rþ. In fact the condition
inf x2E dðxÞ ¼ d[ 0 implies that the s-Riemann sums related to all partitions

fðeAi; xiÞgpi¼1 with HsðeAiÞ\d, and with an arbitrary choice of xi inside eAi,
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i ¼ 1; 2; . . .; p, approximate the s-HK integral of f. Therefore f is s-Riemann
integrable.

The aim of this paper is to investigate the possibility of using in the previous
Theorem an integral in which the gauge d : E ! Rþ is a positive constant, but the

choice of points xi is not arbitrary in eAi, for i ¼ 1; 2; . . .; p. To define a quite general
integral of this type we adapt a Darji–Evans’s idea [36] to functions defined on an s-
set E; i.e. we fix a countable dense subset C of E and we restrict our attention only to

the s-Riemann sums related to all partitions fðeAi; xiÞgpi¼1 such that HsðeAiÞ\d,
i ¼ 1; 2; . . .; p, for some appropriate constant d[ 0, and such that xi is the first

element of C that belongs to eAi, i ¼ 1; 2; . . .; p. So, a new integration process is
formulated and an integral of the first-return type, called s-first return integral of a
function f on E with respect to a trajectory, is defined (see [9, 12], too). The idea of
first return type goes back to Poincaré’s first return map of differentiable dynamics
and already used in differentiation and integration theory [36, 37].

In this paper we prove that the s-first return integral, as well as the s-Riemann
integral, includes the Lebesgue integral with respect to Hs and we prove that there
exists a function f not s-Riemann integrable which is not s-first return integrable (see
Theorem 5). However, as Bongiorno in [9] proved there are s-derivatives not s-first
return integrable. Therefore, we can conclude that in order to obtain the best version
of the Fundamental Theorem of Calculus on an s-set, exactly as well as in the real
line, we need to consider an Henstock–Kurzweil type integral as discussed, i.e., an
integral in which the gauge d is not a constant.

Recall that the optimal version of the Fundamental Theorem of Calculus is given
on the real line by the Henstock–Kurzweil integral, which solves the primitives
problem. Indeed, the Fundamental Theorem of Calculus in the real line states that if

F is differentiable on [a, b] and F 0 ¼ f , then
R b
a f ðxÞdx ¼ FðbÞ � FðaÞ. It is well-

known that in the case of Riemann integration it is necessary to add the additional
condition that the function f must be Riemann integrable. This condition is necessary,
because not every derivative turns out to be Riemann integrable. For instance the

function FðxÞ ¼ x2 sinð1=x2Þ; x 2 ð0; 1�;
0; x ¼ 0;

�
is differentiable everywhere on [0, 1],

but F 0ðxÞ ¼ 2x sinð1=x2Þ � 2

x
cosð1=x2Þ; x 2 ð0; 1�;

0; x ¼ 0;

(
is not Riemann integrable

since it is unbounded. Moreover, F 0 is neither Lebesgue integrable, since F is not
absolutely continuous on [0, 1]. Therefore the Lebesgue integral as well as the
Riemann integral does not solve the problem of primitives. On the contrary the
Henstock–Kurzweil integral gives the best formulation for the Fundamental
Theorem of Calculus on the real line and for this reason it has been extensively
studied by many scholars for instance Russell A. Gordon [38, Preface, Chap-
ters 7 and 9], Lee Peng Yee and Rudolf Vyborny [39], Borkowski and Bugajewska
[40], Tin–Lam Toh and Tuan–Seng Chew [41].
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2 Preliminaries

Throughout this paper we denote by N ¼ f1; 2; . . .g the set of all natural numbers
and by R the set of all real numbers.

Definition 1 Let 0\s\1, the s-dimensional exterior Hausdorff measure of a subset
A of the real line is defined as:

HsðAÞ ¼ lim
d!0

inf
X1
i¼1

ð diam ðAiÞÞs : A �
[1
i¼1

Ai; diam ðAiÞ� d

( )
:

We recall that Hsð�Þ is a Borel regular measure and that the unique number s for
which HtðAÞ ¼ 0 if t[ s and HtðAÞ ¼ 1 if t\s is called the Hausdorff dimension
of A (see [27]).

Whenever A is Hs-measurable with 0\HsðAÞ\1, it is said that A is an s-set. So
Hs is a Radon measure on each s-set.

From now on we denote by E a compact s-set of R and by a ¼ min E and
b ¼ max E.

Definition 2 For x; y 2 E we set

dðx; yÞ ¼ Hsð½x; y� \ EÞ; if x\y;

Hsð½y; x� \ EÞ; if y\x:

�
ð1Þ

Proposition 2 The function ðx; yÞ dðx; yÞ from E � E ! Rþ [ f0g is a metric, and
the space (E, d) is a complete metric space.

Proposition 3 The topology of the metric space (E, d) coincide with the topology
induced on E by the usual topology of R.

Definition 3 (De Guzman–Martin–Reyes [42]) Let F : E ! R and let x0 2 E. The
s-derivatives of F at the point x0, on the left and on the right, are defined,
respectively, as follows:

F 0�
s ðx0Þ ¼ lim

x ! x�0
x 2 E

Fðx0Þ � FðxÞ
dðx; x0Þ ;

F 0þ
s ðx0Þ ¼ lim

x ! xþ0
x 2 E

FðxÞ � Fðx0Þ
dðx; x0Þ ;

when these limits exist.
We say that the s-derivative of F at x0 exists if F 0�

s ðx0Þ ¼ F 0þ
s ðx0Þ or if the s-

derivative of F on the left (respectively, right) at x0 exists and for some e[ 0 we
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have dð½x0; x0 þ eÞ ¼ 0 (respectively, dðx0 � e; x0Þ ¼ 0). The s-derivative of F at x0,
whenever it exists, will be denoted by F 0

sðx0Þ.
Remark 1 If F is s-derivable at the point x0, then F is continuous at x0 according to
the topology induced on E by the usual topology of R:

3 Riemann-type integrals on an s-set

3.1 The s-Riemann integral

Definition 4 We say that a subset eA of E is an E-interval whenever there exists an

interval A � ½a; b� such that eA ¼ A \ E.

Definition 5 Given a finite collection P ¼ fðeAi; xiÞgpi¼1 of pairwise disjoint E-

intervals eAi and points xi 2 E, we say that P is a partition of E if E ¼ Sp
i¼1

eAi and

xi 2 eAi.

Jiang–Su [7] and Parvate–Gangal [18] introduced, for functions defined on a
closed s-set of the real line, the following extension of the usual Riemann integral.

Definition 6 Let f : E ! R. We say that f is s-Riemann integrable on E if there
exists a number I such that, for each e[ 0, there is a d[ 0 with

jSðf ;PÞ � I j\e; ð2Þ

for each partition P ¼ fðeAi; xiÞgpi¼1 of E with HsðeAiÞ\d, for i ¼ 1; 2; . . .; p.
The number I is called the s-Riemann integral of f on E and we write

I ¼ ðsÞ
Z
E
f ðtÞ dHsðtÞ:

The collection of all s-Riemann integrable functions on E will be denoted by sR
(E).

By standard techniques, it follows that if f is continuous on E with respect to the
induced topology, then f 2 sRðEÞ (see Parvate–Gangal [18, Theorem 39]).

Theorem 4 [12, Theorem3.2] If f 2 sRðEÞ, then f is Lebesgue integrable in E with
respect to the Hausdorff measure Hs, andZ

E
f ðtÞ dHsðtÞ ¼ ðsÞ

Z
E
f ðtÞ dHsðtÞ: ð3Þ

3.2 The s-first return integral

Definition 7 Let f : E ! R and let C � E be any sequence of distinct points of E
dense in E. Call C a trajectory.
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We say that f is s-first return integrable on E with respect to C if there exists a
number I such that, for each e[ 0, there is a d[ 0 such that condition (2) holds for

each partition P ¼ fðeAi; xiÞgpi¼1 of E with HsðeAiÞ\d and xi ¼ rðC; eAiÞ, for

i ¼ 1; 2; . . .; p, where rðC; eAiÞ is the first element of C that belongs to eAi.
The number I is called the s-first return integral of f on E with respect to C and we

write

I ¼ ðsfrÞC
Z
E
f ðtÞ dHsðtÞ:

The collection of all s-first return integrable with respect to C functions on E will
be denoted by sfrðEÞC.
Theorem 5 There exists f 62 sRðEÞ such that one of the following conditions holds

(i) there exist two trajectories C1 and C2 of E such that f 2 sfrðEÞC1
, f 2

sfrðEÞC2
and

ðsfrÞC1

Z
E
f ðtÞ dHsðtÞ 6¼ ðsfrÞC2

Z
E
f ðtÞ dHsðtÞ;

(ii) f 62 sfrðEÞC, for each trajectory C of E.

Theorem 6 If f : E ! R is Hs-Lebesgue integrable on E, then there exists a
trajectory C � E such that f 2 sfrðEÞC andZ

E
f dHs ¼ ðsfrÞC

Z
E
f dHs:

4 Proofs

4.1 Proof of Theorem 5

Let C � ½0; 1� be the ternary Cantor set, and let fðan; bnÞgn be the sequence of its
contiguous intervals. C is an s-set for s ¼ log3 2. We define a function f 62 sRðCÞ
satisfying condition i).

To this aim we set C1 ¼ fangn and C2 ¼ fbngn. By the definition of C it follows
that Ci is dense in C, for i ¼ 1; 2. Define

f ðxÞ ¼
1; x ¼ an; n ¼ 1; 2; . . .
2; x ¼ bn; n ¼ 1; 2; . . .
0; otherwise

8<:
Then, by the definition of function s-first return integrable on C with respect to Ci,
i ¼ 1; 2, it follows
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ðsfrÞC1

Z
C
f ðtÞ dHsðtÞ ¼ 1; and ðsfrÞC2

Z
C
f ðtÞ dHsðtÞ ¼ 2:

So, by Theorem 4, we have f 62 sRðCÞ, and condition (i) is satisfied.
Now, in order to end the proof, let us show that the following function

f ðxÞ ¼
ð�2Þn
n

; x 2
g2

3n
;

1

3n�1

� �
;

0; x ¼ 0;

8><>: ð4Þ

is not s-Riemann integrable on C and that condition (ii) is satisfied.
First of all remark that

Hs
g2

3n
;

1

3n�1

� �
¼ 1

2n
¼ Hs

g
0;

2

3n

� �
: ð5Þ

Then Z
C
jf j dHs ¼

X1
1

Z g
2
3n;

1
3n�1

� � jf j dHs ¼
X1
1

2n

n
�Hs

g2
3n

;
1

3n�1

� �

¼
X1
n¼1

1

n
¼ þ1:

Therefore f is not Lebesgue integrable on C with respect to the Hausdorff measureHs

and, by Theorem 4, f 62 sRðCÞ.
Moreover, given a trajectory C ¼ ftng of C, in order to show that f 62 sfrðCÞC, it is

enough to find, for each M [ 0 and each d[ 0, a finite system of pairwise disjoints

C-intervals eAi, i ¼ 1; 2; . . .; p, such that
Sp

i¼1
eAi ¼ C, HsðeAiÞ\d andXp

i¼1

f ðrðC; eAiÞÞHsðeAiÞ[M : ð6Þ

To this end, given two disjoint C-intervals ~J1; ~J2, we use the symbol

rðC; ~J1Þ � rðC; ~J2Þ
whenever rðC; ~J1Þ ¼ tn, rðC; ~J2Þ ¼ tm, and n\m. We also define

N1 ¼ fn 2 N : rðC; g½2=32n; 1=32n�1�Þ � rðC; g½2=32nþ1; 1=32n�Þg
and N2 ¼ NnN1. Remark that

rðC; g½2=32nþ1; 1=32n�1�Þ ¼ rðC; g½2=32n; 1=32n�1�Þ; if n 2 N1;

rðC; g½2=32nþ1; 1=32n�1�Þ ¼ rðC; g½2=32nþ1; 1=32n�Þ; if n 2 N2:

By the divergence of the series
P

n 1=n it follows that, at least one of the series
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P
n2N1

1=n,
P

n2N2
1=n is divergent; then, without loss of generality, we can assume

that
P

n2N1
1=n ¼ þ1.

Now, given d[ 0, let us take k 2 N such that

Hsð g½2=32nþ1; 1=32n�1�Þ\d; for each n	 k: ð7Þ
Then, by (4) and (5), we haveX

n 2 N1

n	 k

f ðrðC; g½2=32nþ1; 1=32n�1�ÞÞHsð g½2=32nþ1; 1=32n�1�Þ

¼
X

n 2 N1

n	 k

22n

2n

1

22nþ1
þ 1

22n

� �
¼ 3

2

X
n 2 N1

n	 k

1

2n
¼ þ1:

So, given M [ 0, there exists N 2 N such that p1 ¼ N � k þ 1 is even and such thatX
n 2 N1

k� n�N

f ðrðC; g½2=32nþ1; 1=32n�1�ÞÞHsð g½2=32nþ1; 1=32n�1�Þ

[M þ 3þ
X1
n¼2

ð�1Þn
n

:

ð8Þ

The C-intervals f g½2=32nþ1; 1=32n�1�gNn¼k are pairwise disjoint, they cover the portion
of C contained in ½2=32Nþ1; 1=32N�1� and each of them has Hs-measure less than d.

They constitute a first group of p1 requested C-intervals feAigp1i¼1:eA1 ¼ g½2=32kþ1; 1=32k�1�; eA2 ¼ g½2=32kþ3; 1=32kþ1�; . . .; eAp1 ¼ g½2=32Nþ1; 1=32N�1�:

Then, by (8), we have

Xp1
i¼1

f ðrðC; eAiÞÞHsðeAiÞ[M þ 3þ
X1
n¼2

ð�1Þn
n

: ð9Þ

Now we define a second group of requested pairwise disjoint C-intervals, feAigp2i¼p1þ1,

that cover the portions of C contained in ½0; 1=32Nþ1�.
There are two possible cases:

rðC; g½0; 1=32Nþ1�Þ ¼ 0; or rðC; g½0; 1=32Nþ1�Þ 6¼ 0:

In the first case we define
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eAp1þ1 ¼ g½0; 1=32Nþ1�;
and we have

f ðrðC; eAp1þ1ÞÞHsðeAp1þ1Þ ¼ 0: ð10Þ
In the second case there exists a unique n
 [ 2N þ 1 such that

rðC; g½0; 1=32Nþ1�Þ 2 g½2=3n
 ; 1=3n
�1�:

If n
 ¼ 2N þ 2 we also define eAp1þ1 ¼ g½0; 1=32Nþ1�, otherwise we define

eAp1þ1 ¼ g½0; 1=3n
�1�; eAp1þ2 ¼ g½2=3n
�1; 1=3n
�2�; . . .; eAp2 ¼ g½2=32Nþ2; 1=32Nþ1�:
Hence we have

f ðrðC; eAp1þ1ÞÞHsðeAp1þ1Þ ¼
1=ðN þ 1Þ; if n
 ¼ 2N þ 2;

2 � ð�1Þn
=n
; otherwise.

(
Consequently,

jf ðrðC; eAp1þ1ÞÞHsðeAp1þ1Þj\1: ð11Þ
Thus, since p1 is even, by (9) and (11), it follows

Xp2
i¼p1þ1

f ðrðC; eAiÞÞHsðeAiÞ
					

					\1þ
Xp2

n¼p1þ2

ð�1Þn
n

\2þ
X1

n¼p1þ2

ð�1Þn
n

:

ð12Þ

The third group of requested pairwise disjoint C-intervals that cover the portions of C
contained in ½2=32N�1; 1� can be defined taking a generic system of pairwise disjoint

C-intervals, feAigpi¼p2þ1, such that HsðeAiÞ\d, for each i, and such thatg½2=3n; 1=3n�1� ¼ S
i2In

eAi, where In � fp2 þ 1; . . .; pg and 1� n� 2N � 1.

By definition of f it follows f ðrðC; eAiÞÞ ¼ f ðrðC; g½2=3n; 1=3n�1 �ÞÞ ¼ ð�2Þn=n; for
1� n� 2N � 1 and i 2 In. ThusXp

i¼p2þ1

f ðrðC; eAiÞHsðeAiÞ ¼
X2N�1

n¼1

ð�2Þn
n

Hsð g½2=3n; 1=3n�1 �Þ

¼
X2N�1

n¼1

ð�1Þn
n

ð13Þ

In, we have defined the required system feAigpi¼1 of pairwise disjoint C-intervals such

that HsðeAiÞ\d, for each i,
Sp

i¼1
eAi ¼ C, and, by (9), (12), and (13), such that
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Xp
i¼1

f ðrðC; eAiÞÞHsðeAiÞ
					

					
¼

Xp1
i¼1

f ðrðC; eAiÞÞHsðeAiÞ þ
Xp2

i¼p1þ1

f ðrðC; eAiÞÞHsðeAiÞ þ
Xp

i¼p2þ1

f ðrðC; eAiÞÞHsðeAiÞ
					

					
[M þ 3þ

X1
n¼2

ð�1Þn
n

�
Xp2

i¼p1þ1

f ðrðC; eAiÞÞHsðeAiÞ
					

					� Xp
i¼p2þ1

f ðrðC; eAiÞÞHsðeAiÞ
					

					
[M þ 3þ

X1
n¼2

ð�1Þn
n

� 2�
X1

n¼N�kþ3

ð�1Þn
n

�
X2N�1

n¼1

ð�1Þn
n

[M :

This completes the proof.

4.2 Preliminaries to the proof of Theorem 6

The Hausdorff measure Hs is a Radon measure on an s-set E (see Mattila [27,
Corollary 4.5]). Then, since E, endowed with the induced topology, is a compact
Hausdorff space, Lusin’s theorem holds (see Folland [43, Theorem 7.10]):

Theorem 7 (Lusin’s theorem) Given a Hs-measurable function f : E ! R and
e[ 0 there exists S � E such that HsðEnSÞ\e and f jS , the restriction of f on S, is
continuous.

In what follows we need the following stronger version of Lusin’s theorem:

Lemma 1 Let T be a Hs-measurable subset of a closed s-set E. Given a Hs-
measurable function f : E ! R and e[ 0 there is a closed nowhere dense set V in T,
such that HsðTnV Þ\e and f jV is continuous.

Proof By Lusin’s theorem, there exists S � T such that HsðTnSÞ\e=2 and f jS is
continuous.

We can assume that the interior of S in the topology induced by T is empty.
Otherwise we remove from its interior a countable dense subset and we get a set
S
 � T such that HsðTnS
Þ\e=2, f jS
 is continuous and S
 has empty interior.

Since Hs is a Radon measure in S, we can find a set V � S, closed in the topology
induced by S, such that HsðSnV Þ\e=2. So V is a closed nowhere dense subset of T
with HsðTnV Þ�HsðTnSÞ þHsðSnV Þ\e and f jV is continuous. h

4.3 Proof of Theorem 6

For each k 2 N let

Fk ¼ ft 2 E : jf ðtÞj � kg
We start by finding inductively a sequence fVng of closed nowhere dense sets such
that Vn � Vnþ1, Vn � Fn, H

sðFnnVnÞ\1=2n, and f jVn
is continuous, for each n 2 N:
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By Lemma 1 there is a closed nowhere dense set V1 � F1 such that
HsðF1nV1Þ\1=2, and f jV1

is continuous.
Now, assume that V1 � V2 � � � � � Vn�1 have been defined, we proceed as

follows. We apply Lemma 1 to the Hs-measurable function f, to the set FnnVn�1, and
to the constant 1=2n. So we find a closed nowhere dense set W � ðFnnVn�1Þ such
that HsððFnnVn�1ÞnW Þ\1=2n, and f jW is continuous. We define Vn ¼ Vn�1 [W .
Then Vn is closed nowhere dense, Vn�1 � Vn, Vn � Fn�1 [W � Fn,
HsðFnnVnÞ ¼ HsððFnnVn�1ÞnW Þ\1=2n, and f jVn

is continuous.
Let V ¼ S

n Vn. Since Vn is closed nowhere dense in E, then EnVn is open and
dense in E. Therefore, since, by Proposition 2, E is a complete metric space with
respect the metric defined in (1), by Baire category theorem, EnV is dense in E.

Let ftng � EnV be dense in E.
We define inductively a trajectory C ¼ fcng of E, as follows:
We define c0 ¼ minV1. Then, assumed that c1; c2; . . .; cn�1 have been defined, let

kn be the first index such that tn belongs to some connected component eJ of EnVkn

and one of the extreme points of eJ is not in fc1; c2; . . .; cn�1g. We define cn as this
extreme point.

Remark that, by the density of ftng, C coincide with the class of all extreme points
of the connected components of the open sets EnV1; . . .;EnVn; . . ..

Now let eJ � E be a C-interval. There exists neJ 2 N such that eJ \ VneJ 6¼ ;.
Moreover, since VneJ is nowhere dense, it is eJ 6� VneJ . Let eI be a connected

component of EnVneJ such that eI \ eJ 6¼ ;. Then eJ contains at least one extreme point

of eI . As remarked before, this extreme point belongs to C; consequently C is dense in
E.

Remark that:

v) given an E-interval eJ and n 2 N, the condition rðC; eJ Þ 62 Vn implieseJ \ Vn ¼ ;.

In fact, by the definition of C there exists m[ n such that rðC; eJ Þ 2 Vm. Then

rðC; eJ Þ is one of the endpoints of some connected component eI of EnVm: Moreover,

since Vn � Vm; there exists a connected component gða; bÞ of EnVn such that eI �gða; bÞ: By the definition of C it follows that the endpoints of gða; bÞ belong to C and

that both precede rðC; eJ Þ. Then gða; bÞ � eJ , so eJ \ Vn ¼ ;.
Now we prove that f 2 sfrðEÞC andZ

E
f dHs ¼ ðsfrÞC

Z
E
f dHs:

Given e[ 0, let N be such that
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Z
EnVN

ðjf j þ 1Þ dHs � e; and
X1
N

nþ 1

2n
� e: ð14Þ

Since VN is closed and f jVN
is continuous, there exists a continuous function g :

E ! ½�N ;N � such that gðtÞ ¼ f ðtÞ, for each t 2 VN ; for example, we can take for g
the unique extension of f from VN to E such that g is linear on each connected
component of EnVN .

Then, g being s-Riemann integrable, there exists a positive constant d such thatX
i

gðrðC; eJiÞÞHsðeJiÞ � Z
E
g dHs

					
					\e; ð15Þ

for each partition P ¼ fðeJi; xiÞgpi¼1 of E with xi ¼ rðC; eJiÞ and HsðeJiÞ\d, for
i ¼ 1; 2; . . .; p.

For i ¼ 1; . . .; p, we define

fP ¼ f ðrðC; eJiÞÞ; on eJi;
gP ¼ gðrðC; eJiÞÞ; on eJi:

Therefore Z
E
fP dH

s ¼
X
i

f ðrðC; eJiÞÞHsðeJiÞ;Z
E
gP dH

s ¼
X
i

gðrðC; eJiÞÞHsðeJiÞ:
Let t 2 ðSn VnÞnVN , then there exists n	N such that t 2 Vnþ1nVn, and there exists

i ¼ 1; 2; . . .; p such that t 2 eJi. Consequently, by v) we infer rðC; eJiÞ 2 Vnþ1. So

jfPðtÞj ¼ jf ðrðC; eJiÞÞj � nþ 1.
Thus, since HsðEnSn VnÞ ¼ 0, we haveZ

EnVN

jfPj dHs �
X1
N

ðnþ 1ÞHsðVnþ1nVnÞ

�
X1
N

ðnþ 1ÞðHsðFnþ1nFnÞ þHsðFnnVnÞÞ

�
Z
EnVN

ðjf j þ 1Þ dHs þ
X1
N

nþ 1

2n

� 2e:

ð16Þ

Moreover
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Z
EnVN

jgPj dHs �N �HsðEnVN Þ

�N � ðHsðEnFN Þ þHsðFNnVN ÞÞ
�

Z
EnFN

jf j dHs þ N

2N

� 2e:

ð17Þ

In, if P ¼ fðeJi; xiÞgpi¼1 is a partition of E with xi ¼ rðC; eJiÞ and HsðeJiÞ\d, for
i ¼ 1; 2; . . .; p, by HsðFNnVN Þ\1=2N and by (14), (15), (16) and (17) we have:

X
i

f ðrðC; eJiÞÞHsðeJiÞ � Z
E
f dHs

					
					

�
X
i

ðf ðrðC; eJiÞÞ � gðrðC; eJiÞÞÞHsðeJiÞ
					

					
þ

X
i

gðrðC; eJiÞÞHsðeJiÞ � Z
E
g dHs

					
					þ

Z
E
jf � gj dHs

�
Z
E
jfP � gPj dHs þ eþ

Z
EnVN

jf � gj dHs

�
Z
EnVN

jfPj dHs þ
Z
EnVN

jgPj dHs þ e

þ
Z
EnVN

jf j dHs þ
Z
EnFN

jgj dHs þ
Z
FN nVN

jgj dHs

� 5 eþ
Z
EnVN

jf j dHs þ
Z
EnFN

jgj dHs þ N

2N

� 8 e:

By the arbitrariness of e, this completes the proof.

5 Conclusion

In [18] a calculus based on fractal subsets of the real line is formulated. In this
calculus, called Fs-calculus, as mentioned in the introduction a crucial role is played
by the mass function that makes the Fs-calculus algorithmic in nature so to be the
best for the applications in various fields of science. Another crucial role, in the Fs-
calculus, is given by s-Riemann integral. However s-Riemann integral is not the best
integral to solve the problem of primitives, that is the problem of recovering a
function from its derivative (i.e. the problem of whether every derivative is
integrable). Therefore, our goal has been to establish an optimized version of the
Fundamental Theorem of Calculus on compact fractal subset of the real line,
comparable to the traditional real line framework. So, we have investigated whether
an s-first return integration process, which is closely akin to that of s-Riemann
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integration, might solve the problem of primitives. We showed that this is not the
case, but we necessitate the incorporation of a specialized type of s-Henstock–
Kurzweil integral. Moreover, since, as stressed, the Fractal calculus is algorithmic in
nature and it provides a more efficient method than other approaches, we can
conjecture that even in the more general case of s-Henstock Kurzweil integral or of s-
first return integral (through the introduction of a new measure in which the mass
function appears, see [23, 35]) we can obtain various applications in the field of
medicine as well as in the field of electrical and mechanical engineering. So, despite
the countless applications mentioned in the introduction, by addressing the
challenges associated with measures on fractal structures, we aspire to contribute
to the advancement of mathematical frameworks applicable to non-differentiable and
non-integrable measures, thereby enriching the broader landscape of calculus on
fractal subset of the real line.
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