The island of Pantelleria (Sicily Strait), the type locality for pantellerite, has been the locus of major calderaforming eruptions that culminated, ca. 50 ka ago, in the formation of the Cinque Denti caldera produced by the Green Tuff eruption. The post-caldera silicic activity since that time has been mostly confined inside the caldera and consists of smaller-energy eruptions represented by more than twenty coalescing pantelleritic centers structurally controlled by resurgence and trapdoor faulting of the caldera floor. A high-resolution 40Ar/39Ar study was conducted on key units spanning the recent (post-20 ka) intracaldera activity to better characterize the present-day status (and forecast the short-term behavior of) the system based on the temporal evolution of the latest eruptions. The new 40Ar/39Ar data capture a long-term (N15 ka) decline in eruption frequency with a shift in eruptive pace from 3.5 ka−1 to 0.8 ka−1 associated with a prominent paleosol horizon marking the only recognizable volcanic stasis around 12–14 ka. This shift in extraction frequency occurswithoutmajor changes in eruptive style, and is paralleled by a subtle trend of decreasingmelt differentiation index. We speculate that this decline probably occurred (i) without short-term variations in melt production/differentiation rate in a steadystate compositionally-zoned silicic reservoir progressively tapped deeper through the sequence, and (ii) that it was possibly modulated by outboard eustatic forcing due to the 140 m sea level rise over the past 21 ka. The intracaldera system is experiencing a protracted stasis since 7 ka. Coupled with recent geodetic evidence of deflation and subsidence of the caldera floor, the system appears today to be on a wane with no temporal evidence for a short-term silicic eruption.
Scaillet, S., Rotolo, S., LA FELICE, S., Vita, G. (2011). High-resolution 40Ar/39Ar chronostratigraphy of the post-caldera (<20 ka) volcanic activity at Pantelleria, Sicily Strait. EARTH AND PLANETARY SCIENCE LETTERS, 309(309), 280-290 [doi:10.1016/j.epsl.2011.07.009].
High-resolution 40Ar/39Ar chronostratigraphy of the post-caldera (<20 ka) volcanic activity at Pantelleria, Sicily Strait
ROTOLO, Silvio Giuseppe;
2011-01-01
Abstract
The island of Pantelleria (Sicily Strait), the type locality for pantellerite, has been the locus of major calderaforming eruptions that culminated, ca. 50 ka ago, in the formation of the Cinque Denti caldera produced by the Green Tuff eruption. The post-caldera silicic activity since that time has been mostly confined inside the caldera and consists of smaller-energy eruptions represented by more than twenty coalescing pantelleritic centers structurally controlled by resurgence and trapdoor faulting of the caldera floor. A high-resolution 40Ar/39Ar study was conducted on key units spanning the recent (post-20 ka) intracaldera activity to better characterize the present-day status (and forecast the short-term behavior of) the system based on the temporal evolution of the latest eruptions. The new 40Ar/39Ar data capture a long-term (N15 ka) decline in eruption frequency with a shift in eruptive pace from 3.5 ka−1 to 0.8 ka−1 associated with a prominent paleosol horizon marking the only recognizable volcanic stasis around 12–14 ka. This shift in extraction frequency occurswithoutmajor changes in eruptive style, and is paralleled by a subtle trend of decreasingmelt differentiation index. We speculate that this decline probably occurred (i) without short-term variations in melt production/differentiation rate in a steadystate compositionally-zoned silicic reservoir progressively tapped deeper through the sequence, and (ii) that it was possibly modulated by outboard eustatic forcing due to the 140 m sea level rise over the past 21 ka. The intracaldera system is experiencing a protracted stasis since 7 ka. Coupled with recent geodetic evidence of deflation and subsidence of the caldera floor, the system appears today to be on a wane with no temporal evidence for a short-term silicic eruption.File | Dimensione | Formato | |
---|---|---|---|
Scaillet et al., 2011 copia.pdf
accesso aperto
Descrizione: articolo
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.